
Rust Education Workshop 2022

Hui Xu
School of Computer Science

Fudan University

Experiences of Teaching Rust and 
Code Recommendation to Assist Rust Beginners

!"#$"#$##

1

Rust Education Workshop 2022



Rust Education Workshop 2022

Outline

2

I. Background

II. Experiences of Teaching Rust

III. Code Recommendation to Assist Beginners



Rust Education Workshop 2022

Short Bio

3

vTenure-track Associate Professor, Fudan University
vResearch Interest: program analysis and software reliability

ØSeveral publications related to Rust
vCourses I teach at Fudan:

ØCOMP 737011 - Memory Safety and Programming Language Design
� Postgraduate course
� Design of Rust and the memory-safety issues it aims to address

Ø SOFT 130061 - Compiler Theory 
� Undergraduate course
� A few concepts related to Rust (e.g., type system)



Rust Education Workshop 2022

Research Interest In Rust Language 

4

v In software reliability research, we cannot trust developers.
vThere are already many papers working on detecting bugs 

through software testing, static analysis, etc.

Compile

Testing

Advanced 
Analysis

vRust starts a new trial that aims to prevent critical bugs through 
language design while still offering adequate control flexibility.
Ø It is challenging to balance between security and usability.

vOur research work: 
ØRust bug survey [1]
ØRust program analysis: RULF [2], SafeDrop [3]

[1] “Memory-safety challenge considered solved? An in-depth study with all Rust CVEs”, TOSEM, 2022.
[2] "RULF: Rust library fuzzing via API dependency graph traversal." ASE, 2021.
[3] “SafeDrop: Detecting memory deallocation bugs of Rust programs via static data-flow analysis.” TOSEM, 2022.



Rust Education Workshop 2022

Result of Survey
vBased on a dataset of 185 memory-safety bugs before 2020-12-31

Std Lib

3rd-party Libs

Executables

Compiler

119 CVEs + 12 (Advisory-DB) + 4 (Trophy Case) + 7 (GitHub)

0 CVEs + 1 (Advisory-DB)

3 CVEs + 2 (Advisory-DB) + 28 (GitHub)

0 CVEs + 10 (GitHub)

PoC
#![forbid(unsafe_code)]

Libraries
unsafe code

call safe (unsound) APIs

Unsound

Mem-Safety
Problem Executable

Libraries

escalation of unsoundnessDeveloper

User

submit

release

Unsound

Bug 
Report

[1] “Memory-safety challenge considered solved? An in-depth study with all Rust CVEs”, TOSEM, 2022.

vRust is effective in memory-safety protection:
ØAll these bugs require unsafe code except one compiler bug.
ØMost CVEs are API soundness issues (no CVEs of executables).



Rust Education Workshop 2022

Why Do I Teach Rust?

6

vRust is a successful language.
ØMy student told me “As long as a Rust program compiles, the executable is 

likely to work correctly.”
ØOne senior Rust developer said “I can always feel my skill improvement in 

using the language.”

vA new language with few “legacy features”
Øe.g., C++ intelligent pointers vs Rust ownership + RC

vAppealing features of Rust:
ØMemory-safety guarantee if developers do not use unsafe APIs
ØPowerful type system: type inference, generic, trait bound, etc.
Ø Exception handling design: Result/Error type, unwinding/abort
Ø…

Interested in 
Rust

Learn Rust 
(research) Teach Rust



Rust Education Workshop 2022

Sample Features I Like

7

vVariable declaration grammar: type after identifier
ØMuch easier to develop an efficient top-down parser (compiler)
ØCompact for type inference: type can be omitted

let x:i32 = 1;
let y = 2;

Rust Code C/C++ Code

fn max<T:Ord>(x:T,y:T)->T{
if x > y {x} else {y}

}

int32_t x = 1;
auto y = 2;

vTrait bound: to declare bounded generic parameters
ØUseful for debugging and safety control (Send/Sync)

template <typename T>
T max(T x, T y) {

return (x > y) ? x : y;
}

Rust Code C/C++ Code



Rust Education Workshop 2022

Outline

8

I. Background

II. Experiences of Teaching Rust

III. Code Recommendation to Assist Beginners



Rust Education Workshop 2022

COMP 737011 - Memory Safety and Programming Lang. Design

9

v3 * 45 minutes each weak
Ø 2 units for teaching
Ø 1 unit for in-class practice

vGrading
ØAttack experiment
ØCoding practice
Ø Paper presentation

Course Website: https://hxuhack.github.io/lecture/memsafe



Rust Education Workshop 2022

Four Rust Coding Practices

10

v I: Implement a binary search tree or a double linked list
Ø Support insertion, deletion, and search
ØUse safe Rust only

v II: Extend the struct with generic parameters and traits
Ø Support generic parameters
Ø Implement traits such as Eq and Ord

v III: Implement an iterator for the struct
ØDemonstrate how the filter works with closure
ØOptional feature: collect(), map()

v IV: Rewrite the struct to be thread-safe 
Ø Implement Sync and Send traits
Ø Show the struct is thread-safe

Concurrency

Type system

Ownership

• Send
• Sync
• …

• Generic
• Trait
• Closure

• Borrow-check
• Lifetime 



Rust Education Workshop 2022

Time Spent on Each Practice

11

vMost students can finish the assignments in 2 hours.

0

1

2

3

4

5

6

7

8

9

10

Student1-DoubleLinkedList Student2-DoubleLinkedList Student3-BinarySearchTree Student4-BinarySearchTree
Ownership Generic+Trait Iterator+Closure Send+Sync



Rust Education Workshop 2022

Is Rust Difficult to Learn?

12

vResponses from my students: 
Ø “Unfamiliar with the ownership”
Ø “Have much restrictions on developers”
Ø “Difficult but interesting. I spent much time combating with the 

compiler’s borrow check and dereference issues.”
Ø “Not that difficult if with C++ background, but I think lifetime is hard.”



Rust Education Workshop 2022

My Understanding of Rust’s Steep Learning Curve

13

vAssume a Minimal Rust for beginners? (as I tried in my class)
Ø Still not easy to write compliable code but should be manageable
Ø Exclusive mutability principle (borrow check)
Ø Lifetime mechanism (lifetime inference)

vMany advanced features
ØBring barriers to reading Rust code written by others
ØDifficult to use these features well

� e.g., Safe/unsafe, trait bound
� C/C++ developers may ignore the soundness of their APIs



Rust Education Workshop 2022

Outline

14

I. Background

II. Experiences of Teaching Rust

III. Code Recommendation to Assist Beginners



Rust Education Workshop 2022

Code Recommendation (Our Ongoing Project)

15

vBuild a knowledge base that summarizes the common mistakes 
made by Rust developers

vMake recommendations to developers when coding
vFeatures can be considered:

ØCompiling errors related to borrow check and lifetime
� =>Provide better suggestions to fix the bug

ØUnnecessary usage of unsafe code
� =>Suggest equivalent safe code

ØOther common patterns of bugs
� =>Warn developers the problem



Rust Education Workshop 2022

Example of Replaceable Unsafe Code: MaybeUninit

16 https://github.com/bottom-software-foundation/bottom-rs/pull/6/files



Rust Education Workshop 2022

Example of Replaceable Unsafe Code: Raw Pointer

17 https://github.com/rust-lang/rust/pull/83465/files



Rust Education Workshop 2022

Solution Overview

18

vBased on the language server protocol
ØOr Rust Analyzer (https://rust-analyzer.github.io)

vAdvantages: 
ØRely on the power of the server to do complicated analysis tasks, 

e.g., static analysis, machine learning
ØPerform analysis when coding instead of when compiling
ØOne server for several clients
ØIncremental knowledge base

LSP Client

IDE

LSP Server

Code 
Recommendation

Knowledge 
Base

LSP



Rust Education Workshop 2022

Recommendation Approach

19

Extract 
Attributed 

CFG

Code 
Augmentation

Train 
Siamese 

Graph NN
Model

Rust IDE
fn main() {

let mut num = 5;
let r = &num as *...
unsafe {

*r;
}
...

} 

Locate Unsafe 
Code Snippet

Generate 
Embedding Compute Similarity 

Code Recommendation

Phase II: Training

Knowledge baseRustdoc
+ GitHub

Code Analysis 
and Extraction 

(manual)

Generate 
Embedding

Phase I: Preparing Knowledge Base

Phase III: Recommendation



Rust Education Workshop 2022

Similarity = Consine (e1, e2)
Embedding: e1 Embedding: e2

Demonstration of Data Processing 
vSiamese graph neural network

Ø Similarity between the same code: 1
Ø Similarity of different code snippets: 0

vAttributed control-flow graph
ØA directed graph of vectors
Ø Each vector represents the features of 

a basic code block
� Number of statements
� Indegree
� Outdegree
� … 

Graph Nerual
Network Φ!(x)

Graph Nerual
Network Φ"(x)

BB1

BB2 BB3

[1,2,0,1,1]

[2,1,2,1,2] [3,2,3,1,0]
Attributed 

CFG

CFG

Code 
Snippets

20



Rust Education Workshop 2022

Conclusion and Takeaways

21

vRust is a successful language with many attractive features.
vMy experiences of teaching (minimal) Rust is encouraging.

ØPositive feedback based on the performance of my students

vThe magic of Rust lies in the soundness requirement of safe APIs.
ØDeclarative security 

vTo assist Rust beginners in writing high quality code, we can 
summarize common bug patterns and make recommendations.
ØLanguage server protocol
ØSiamese graph neural network



Rust Education Workshop 2022

Q & A

22

Thanks for Watching


