- Rust Education Workshop 2022

Experiences of Teaching Rust and
Code Recommendation to Assist Rust Beginners

Hui Xu
School of Computer Science
Fudan University

8/20/2022

% Rust Education Workshop 2022

Outline
. Background
. Experiences of Teaching Rust

. Code Recommendation to Assist Beginners

% Rust Education Workshop 2022

Short Bio

< Tenure-track Associate Professor, Fudan University

<» Research Interest: program analysis and software reliability
»>Several publications related to Rust
<+ Courses | teach at Fudan:

» COMP 737011 - Memory Safety and Programming Language Design
Postgraduate course

Design of Rust and the memory-safety issues it aims to address
> SOFT 130061 - Compiler Theory

Undergraduate course

A few concepts related to Rust (e.g., type system)

@ Rust Education Workshop 2022
Research Interest In Rust Language

< In software reliability research, we cannot trust developers.

< There are already many papers working on detecting bugs
through software testing, static analysis, etc.

Advanced
Analysis

< Rust starts a new trial that aims to prevent critical bugs through
language design while still offering adequate control flexibility.
> It is challenging to balance between security and usability.

2 Qur research work:

> Rust bug survey [1]
> Rust program analysis: RULF [2], SafeDrop [3]
[1] “Memory-safety challenge considered solved? An in-depth study with all Rust CVEs”, TOSEM, 2022.

[2] "RULF: Rust library fuzzing via APl dependency graph traversal." ASE, 2021.
[3] “SafeDrop: Detecting memory deallocation bugs of Rust programs via static data-flow analysis.” TOSEM, 2022.

@ Rust Education Workshop 2022
Result of Survey

<» Based on a dataset of 185 memory-safety bugs before 2020-12-31

Executables « ¢ 0 CVEs + 10 (GitHub)

3rd-party Libs _

¢ 119 CVEs + 12 (Advisory-DB) + 4 (Trophy Case) + 7 (GitHub)

Std Lib ¢ 3 CVEs + 2 (Advisory-DB) + 28 (GitHub)

@ ¢ 0 CVEs + 1 (Advisory-DB)

< Rust is effective in memory-safety protection:

> All these bugs require unsafe code except one compiler bug.
> Most CVEs are APl soundness issues (no CVEs of executables).

Bug submit
4—
release Report

Sm—— Executable™ = <«
{DEV} 24 User

Trcall safe (unsound) APls Developer escalation of unsoundness
Libraries Libraries
unsafe code

[1] “Memory-safety challenge considered solved? An in-depth study with all Rust CVEs”, TOSEM, 2022.

PoC
#1[forbid(unsafe_ce

% Rust Education Workshop 2022

Why Do | Teach Rust?

Interested in . Teach Rust
Rust

< Rust is a successful language.

> My student told me “As long as a Rust program compiles, the executable is
likely to work correctly.”

> One senior Rust developer said “I can always feel my skill improvement in
using the language.”

< A new language with few “legacy features”
»e.g., C++ intelligent pointers vs Rust ownership + RC
< Appealing features of Rust:
> Memory-safety guarantee if developers do not use unsafe APIs

> Powerful type system: type inference, generic, trait bound, etc.
> Exception handling design: Result/Error type, unwinding/abort

° > ...

@ Rust Education Workshop 2022
Sample Features | Like

< Variable declaration grammar: type after identifier
> Much easier to develop an efficient top-down parser (compiler)
» Compact for type inference: type can be omitted

Rust Code C/C++ Code
let x:132 = 1; int32 t x = 1;
let y = 2; auto y = 2;

< Trait bound: to declare bounded generic parameters
> Useful for debugging and safety control (Send/Sync)

Rust Code C/C++ Code
fn max<T:0rd>(x:T,y:T)->T{ template <typename T>
if x >y {x} else {y} T max(T x, Ty) {
} return (x > y) ? X : VY,
}

% Rust Education Workshop 2022

Outline
. Background
Il. Experiences of Teaching Rust

. Code Recommendation to Assist Beginners

% Rust Education Workshop 2022

COMP 737011 - Memory Safety and Programming Lang. Design

Part1: Foundations of Memory Safety 3 * 45 minutes each Weak

e Week1: Course Introduction » 2 units for teaching

® Week1: Buffer Overflow

e Week2: Memory Allocation > 1 unit for in-class practice
® Week3: Heap Attack and Protection .

e Week4: Memory Exhaustion and Exception Handling < Gradi ng

e Week5: Concurrent Memory Access .
> Attack experiment
Part2: Rust Programming Language

> Coding practice

® Week6: Rust Ownership-based Memory Management > Pa per presentation
e Week7: Rust Type System

e Week8: Rust Concurrency

e Week9: Rust Functional Programming

e Week10: Rust Compiler Design

e Week11: Rust Compiler Techniques (by Guest Speaker)

Part3: Advanced Topic for Memory Safety
Due to Covid-19, we have to rearrange the course materials.

e Week12: Dynamic Analysis of Rust Programs
e Week13: Static Analysis of Rust Programs

a e Week14: Presentation (by Students)
Course Website: https://hxuhack.github.io/lecture/memsafe

% Rust Education Workshop 2022

Four Rust Coding Practices

< |: Implement a binary search tree or a double linked list
> Support insertion, deletion, and search
> Use safe Rust only

< |I: Extend the struct with generic parameters and traits
> Support generic parameters
> Implement traits such as Eq and Ord

< IlI: Implement an iterator for the struct
» Demonstrate how the filter works with closure

> Optional feature: collect(), map()

“ |IV: Rewrite the struct to be thread-safe

> Implement Sync and Send traits Concurrency

> Show the struct is thread-safe
Type system

S

Ownership

¢ Send
e Sync

e Generic
¢ Trait
¢ Closure

e Borrow-check
o Lifetime

@ Rust Education Workshop 2022
Time Spent on Each Practice

< Most students can finish the assignments in 2 hours.

10

N

[EEN

Studentl-DoublelinkedList ~ Student2-DoubleLinkedList Student3-BinarySearchTree Student4-BinarySearchTree
m Ownership Generic+Trait m Iterator+Closure m Send+Sync

o

@ Rust Education Workshop 2022
Is Rust Difficult to Learn?

T sy am ow (1] .
FIF w29 22 x1 Quora 1y 2 @ reddit & rrust b Q (=
HEES Rust (HRED)
RUSTZI A ZEMFEE 2 Is Rust difficult to learn? E 3
ARRAPRUSTH, IREHEEIPE! Y, Answer 3 Follow - 17 3 Reqt

o BREBNEE Posts v v

Ad by JetBrains Academy

Creating your first app in Kotlin is ea:

2 TEE Get hands-on experience in Kotlin by buil @ Posted by u/Michal_Vaner 4 years ago
=8 [7 Learn More 159 Why is Rust difficult?
MBS, FMENES~ @

vorner.github.io/diffic... (2

All related (43) v

<» Responses from my students:
> “Unfamiliar with the ownership”
> “Have much restrictions on developers”

> “Difficult but interesting. | spent much time combating with the
compiler’s borrow check and dereference issues.”

> “Not that difficult if with C++ background, but | think lifetime is hard.”

% Rust Education Workshop 2022

My Understanding of Rust’s Steep Learning Curve

< Assume a Minimal Rust for beginners? (as | tried in my class)
> Still not easy to write compliable code but should be manageable
> Exclusive mutability principle (borrow check)

> Lifetime mechanism (lifetime inference)

<»Many advanced features
> Bring barriers to reading Rust code written by others
> Difficult to use these features well

e.g., Safe/unsafe, trait bound

C/C++ developers may ignore the soundness of their APIs

@ Rust Education Workshop 2022
Outline

. Background
. Experiences of Teaching Rust

Ill. Code Recommendation to Assist Beginners

@ Rust Education Workshop 2022
Code Recommendation (Our Ongoing Project)

< Build a knowledge base that summarizes the common mistakes
made by Rust developers

< Make recommendations to developers when coding
<+ Features can be considered:
» Compiling errors related to borrow check and lifetime
=>Provide better suggestions to fix the bug

> Unnecessary usage of unsafe code

=>Suggest equivalent safe code
» Other common patterns of bugs

=>Warn developers the problem

Rust Education Workshop 2022

Example of Replaceable Unsafe Code: MaybeUninit

19 static ref BYTE_TO_EMOJI: [String; 256] = {
- // SAFETY: safe
- let mut m: [MaybeUninit<String>; 256] = unsafe { MaybeUninit::uninit().assume_init() };

20 + const EMPTY_STRING: String = String::new();
21+
22 + let mut m = [EMPTY_STRING; 2561;
23 for i in 0..=255u8 {
- m[i as usize] = MaybeUninit::new(byte_to_emoji(i));
24 4+ m[i as usize] = byte_to_emoji(i);
25 }
- unsafe { mem::transmute::<_, [String; 2561>(m) }
26 + m
27 ¥

@ https://github.com/bottom-software-foundation/bottom-rs/pull/6/files

@ Rust Education Workshop 2022
Example of Replaceable Unsafe Code: Raw Pointer

- fn read_raw_bytes(&mut self, s: &mut [MaybeUninit<u8>]) -> Result<(), String> {

670 + fn read_raw_bytes_into(&mut self, s: &mut [u8]) -> Result<(), String> {
671 let start = self.position;
n— let end = start + s.len();

- assert!(end <= self.data.len());

- // SAFETY: Both ‘“src’ and ‘dst’ point to at least “s.len()’ elements:
= // “src® points to at least 's.len()’ elements by above assert, and

- // “dst’ points to ‘s.len()’ elements by derivation from “s’.

- unsafe {
- let src = self.data.as_ptr().add(start);
- let dst = s.as_mut_ptr() as *xmut u8;

- ptr::copy_nonoverlapping(src, dst, s.len());

- self.position = end;

672 + self.position += s.len();

673 | + s.copy_from_slice(&self.datalstart..self.positionl]);
674 ok(())

675 }

@ https://github.com/rust-lang/rust/pull/83465/files

@8 Rust Education Workshop 2022
Solution Overview
<» Based on the language server protocol
> Or Rust Analyzer (https://rust-analyzer.github.io)
< Advantages:

> Rely on the power of the server to do complicated analysis tasks,
e.g., static analysis, machine learning

» Perform analysis when coding instead of when compiling
> One server for several clients

> Incremental knowledge base

@ LSP Server
[_§ "

LSP

Code Knowledge
LSP Client Recommendation Base

IDE

@ Rust Education Workshop 2022
Recommendation Approach

Phase I: Preparing Knowledge Base

: Code Analysis

Rustd and Extraction :> j‘> Generate :>
ustdoc Embedding Knowledge base

. . A
Phase II: Training —
Code Extract _
Augmentation Attributed Slamese
Graph NN
CFG
Phase lll: Recommendation

et mt = 5; |:> Locate Unsafe j‘> |:> Generate :> Compute Similarit
maate Code Snippet Embedding P Y

r;

Code Recommendation

@ Rust Education Workshop 2022
Demonstration of Data Processing

Similarity = Consine (e,, ;) < Siamese graph neural network
Embedding: e; i 4 Embedding: e,

e B L = > Similarity between the same code: 1

Graph Nerual Graph Nerual > Similarity of different code snippets: 0
Network @4 (x) Network @, (x).

- % I -
-,g-i‘-_»,‘- < Attributed control-flow graph
U = > A directed graph of vectors
> Each vector represents the features of
| [1,2,0,1,1] a basic code block
Attgllc:)(u;ted [2'1'J2’,1'2] (32310] Number of statements
Indegree
ﬂ Outdegree
BB1
CFG @32% BB3

[

Code
Snippets

@ Rust Education Workshop 2022
Conclusion and Takeaways

< Rust is a successful language with many attractive features.

< My experiences of teaching (minimal) Rust is encouraging.
> Positive feedback based on the performance of my students

< The magic of Rust lies in the soundness requirement of safe APIs.
» Declarative security

<+ To assist Rust beginners in writing high quality code, we can
summarize common bug patterns and make recommendations.
> Language server protocol
» Siamese graph neural network

Thanks for Watching

Q&A

