
Fudan University

Towards Reliable OS: Rust, Design, or
Verification?

Hui Xu

2024-06-23

Outline

2

I. Problem

II. Pros and Cons of Rust

III. Novel Rust OS Design

IV. Verification Techniques

V. Summary

I. Problem
Can Rust enable more reliable OS？

3

When Linux meets Rust...

4 https://lkml.org/lkml/2022/9/19/1105#1105.php

Wedson A. Filho

Linus Torvalds

“If you can't deal with the rules that the kernel requires, then just don't
do kernel programming. Because in the end it really is that simple. I really
need you to understand that Rust in the kernel is dependent on *kernel*
rules. Not some other random rules that exist elsewhere.”

“We generally have two routes to avoid undefined behavior: detect at
compile time (and fail compilation) or at runtime…”

Eye-Catching Headlines of CVEs “related to” Rust

https://flatt.tech/research/posts/batbadbut-you-cant-securely-execute-commands-on-windows/
5

Truth:
A Windows issue that
affects all languages.

use std::process::Command;

Command::new("cmd.exe")
 .args(["escape letter", "&calc.exe"])
 .spawn()
 .expect("command failed to start");

Users may inject new command
via escape letters for cmd.

II. Pros and Cons of Rust

6

Idea of Rust for Security: Security Zone

7

Operating System: Ring Model

Kernel

User Space

System Call

Less Privileged

Security objectives of Rust:
• Type safety (nothing special)
• No heap bugs (auto)
• No other undefined behaviors

Unsafe
Code

Safe Code
Rust: Code Privilege Model

Less Privileged

Interior unsafe: encapsulate privileged
code within safe APIs

Safe Rust (Ownership Scheme) ≈ C++ with Enforced Intelligent Pointers

8

vEach object is owned by one variable
vOwnership can be moved or borrowed (immutable/mutable)

vExclusive mutability: an object cannot be mutable and shared at one program point

let mut alice = Box::new(1);
let bob = alice;
println!("alice:{}", alice);

let mut alice = Box::new(1);
let bob = &mut alice;
**bob = **bob + 1;
println!("alice:{}", alice);

Alice owns the Box object
move the ownership from Alice to Bob

Bob borrows the ownership
Bob is dead; return the ownership

(Unsafe Rust ≈	C) => Interior Unsafe is the Key

9

vEncapsulate unsafe code within safe APIs
vPrevent developers from directly using unsafe code

impl<T> Vec<T> {
 //safe API encapsulation
 pub fn push(&mut self, value: T) {
 if self.len == self.buf.capacity() {
 self.buf.reserve_for_push(self.len);
 }

unsafe {
 let end = self.as_mut_ptr().add(self.len);
 ptr::write(end, value);
 self.len += 1;

}
 }
}

Example from Rust std-lib

Project Code

Library Code

safe API
unsafe

safe API
unsafe

call

Low-level Control: Memory-Mapped IO

10

let vga_buffer = 0xb8000 as *mut u8;
for (i, &byte) in HELLO.iter().enumerate() {

unsafe {
 *vga_buffer.offset(i as isize * 2) = byte;
 *vga_buffer.offset(i as isize * 2 + 1) = 0xb;

}
}

https://os.phil-opp.com/minimal-rust-kernel/

lazy_static! {
 pub static ref WRITER: Writer = Writer {
 column_position: 0,
 color_code: ColorCode::new(Color::Yellow, Color::Black),
 buffer: unsafe { &mut *(0xb8000 as *mut Buffer) },
 };
}

III. Novel Rust OS Design
Theseus
Asterinas

11

Asterinas: Forbid Unsafe Code via Framekernel

12

vKernel services: developed with safe Rust only
vFramekernel: provides a TCB (apis) with interior unsafe code

https://asterinas.github.io/book/kernel/the-framekernel-architecture.html

safe Rust

TCB: Interior unsafe Rust

impl MmioCommonDevice {
 pub(super) fn new(paddr: Paddr, handle: IrqLine) -> Self {
 ...
 // SAFETY: This range is virtio-mmio device space.
 let io_mem = unsafe { IoMem::new(paddr..paddr + 0x200) };
 let res = Self { io_mem, irq: handle, };
 res
 }
}

Example: Memory-Mapped IO
impl IoMem {
 pub(crate) unsafe fn new(range: Range<Paddr>) -> IoMem {
 IoMem { virtual_address: paddr_to_vaddr(range.start), limit: range.len(), }
 }
}
impl VmIo for IoMem {
 fn write_bytes(&self, offset: usize, buf: &[u8]) -> crate::Result<()> {
 self.check_range(offset, buf.len())?;

unsafe { core::ptr::copy(...); }
 Ok(())
 }
}

13

Is this interior unsafe method sound? ?

Probably yes. Leveraging visibility, kernel cannot directly access the function.

Theseus: Intralingual Approach to Enforce Invariants about OS Semantics

14

vTo mitigate the faults of state spill: e.g., process management, inter-entity collaborations

Kevin Boos, et al. "A characterization of state spill in modern operating systems." EuroSys. 2017.
Kevin Boos, et al. "Theseus: an experiment in operating system structure and state management." OSDI 2020.

vCharacteristics of Theseus OS:
ØSingle address space
ØSingle privilege level
ØSingle allocator instance

Example: Task Management

15

vMulti-tasking: similar as multi-threading
vServer can safely relinquish its state to client

pub struct Task {
pub id: usize,
pub name: String,
pub mmi: Arc<Mutex<MemoryManagementInfo,
 DisableIrq>, Global>,
pub is_an_idle_task: bool,
pub app_crate: Option<Arc<AppCrateRef, Global>>,
pub namespace: Arc<CrateNamespace, Global>,
/* private fields */
...,

}

pub fn create(task: Task,
cleanup: FailureCleanupFunction)

-> JoinableTaskRef

https://www.theseus-os.com/Theseus/book/subsystems/task.html

Same Virtual Memory Space

Process BService A

Rust objects

Our Efforts to Ease Out-Of-Memory Handling: OOM-Guard

16

vRust employs infallible mode by default
vSwitching to falliable mode (nightly Rust) requires much exception handling efforts
vOOM-Guard:

ØReserve a large enough heap space (prediction) by the top-level API
ØSubsequent allocations reusing the space would not fail

API - F1

F2 F3

F4
F5

malloc()

Infallible mode

API-F1

F2 F3

F4 F5
try_malloc()

Fallible mode

error propagation

try_malloc(...) -> Result<...>

Chengjun Chen, et al. OOM-Guard: Towards Improving the Ergonomics of Rust OOM Handling via a Reservation-Based Approach, FSE, 2023

Panic if F5 malloc fails Allow developers to handle
malloc failures in F5

OOM-Guard: Demonstration of Usage

17

IV. Verification Techniques

18

Key Problem: Soundness Verification of Interior Unsafe Code

19

v Interior unsafe is an advocated paradigm in system software development with Rust.
vHow to verify the soundness of interior unsafe code? Either by human or automated.

Asterinas

Theseus OS

ArceOS

Verification Techniques

20

Interactive
HOL/Isabella/Iris/Coq

Automatic
CVC/Z3

Model CheckingDe/Inductive Verification

Manual
Proof

Theorem Provers

Automated
abstract interpretation

/symbolic execution

Specification

Kani/Prusti/Verus/RustHorn

Contract
Properties

Theorem
Functional Correctness

function code +
proof code

seL4/RustBeltExample Work
Lightweight Formal Method

Static Analysis/
Dynamic Analysis

Rudra/SafeDrop/Semgrep

Alias analysis
/lattice-based

/pattern-based
/…

Verus: Model Checker

21

vUsage: automated + require contract annotations (oracle)
vNot directly applicable for OS verification, especially the soundness of using unsafe code
vLimitations: feature/precision issues (e.g., heap modeling, loop handling)

https://github.com/verus-lang/verus

verus! {
fn octuple(x1: i8) -> (x8: i8)

requires -16 <= x1 < 16,
ensures x8 == 8 * x1,

{
 let x2 = x1 + x1;
 let x4 = x2 + x2;
 x4 + x4
}
fn main() {
 let n = octuple(10);
 assert(n == 80);
}

}

Contract: precondition
Contract: postcondition

Andrea Lattuada, et al. "Verus: Verifying rust programs using linear ghost types." OOPSLA, 2023.

SafeDrop: Static Analysis for Dangling Pointer Bug Detection

22

vLimitations: do not support other UBs; false positives

1. Path Extraction

2. Alias Analysis

3. Pattern Detection

Control-flow Graph Spanning Tree

Mohan Cui, et al. "SafeDrop: Detecting memory deallocation bugs of rust programs via static data-flow analysis." TOSEM. 2023.
https://github.com/Artisan-Lab/RAP

Real-world Rust Project Verification: Track Unsafety Propagations

23

Object FlowFunction Call

Unsafe Dynamic APISafe APIUnsafe API Unsafe ConstructorSafe Dynamic API Safe Constructor

Unsafety Isolation Graph: MMIO Example from Asterinas

Current Crate

std-lib

Zihao Rao, et al. "Characterizing Unsafe Code Encapsulation In Real-world Rust Systems." arXiv preprint (2024).

The graph could be huge

Split the Graph into Small Audit Units based on Patterns

24

RS: Required Safety Property
VS: Verified Safety Property

safe fn

unsafe fn unsafe method safe constructor

safe fn

safe method

safe constructor

unsafe fn

𝑅𝑆!" ∈ 𝑉𝑆#" 𝑅𝑆!$ ∈ 𝑉𝑆#"

𝑅𝑆!" ∈ 𝑉𝑆#$ + 𝑉𝑆%&

safe method

unsafe constructor

unsafe fn

𝑅𝑆!" ∈ 𝑉𝑆#$ + 𝑅𝑆!& + 𝑉𝑆!&

V. Summary

25

Summary

26

vSafe Rust ≈ C++ with enforced intelligent pointers

vThe magic of Rust lies in interior unsafe or unsafe code encapsulation

vPossible benefits for Rust towards reliable OS:

ØAsterinas: forbid unsafe code via framekernel

ØTheseus: intralingual approach to enforce invariants about OS semantics

vVerification for interior unsafe code is critical for achieving reliable Rust OS

Thanks! Q&A

