Rusti® S : THREFFIEFFZE 717

Demystifying Rust: Features and Trends

Hui Xu
School of Computer Science
Fudan University

10/29/2023

Outline

. Overview
1. Security

I1l. Efficiency
V. Usability
V. Summary

|. Overview of Rust

Origination of Rust

Graydon Hoare Supported Self-hosting First stable Layoff by @gmmm
(broken elevator) by Mozilla (OCaml->Rust) release Mozilla
|

2006 2009 2011 2015 2020 2021

AWS, Huawei, Google,
Microsoft, Mozilla...

Shrimp

@u st Oxidize

G How Rust Went from a Side Project to the World's Most-Loved Programming Language, MIT Technology Review, 2023

A Famous Figure...

30x

25X

20x

15x

10x

5x

Ox

° https://dzone.com/articles/the-exponential-cost-of-fixing-bugs

Relative cost to fix bugs,
based on time of detection

The Exponential Cost of

B HaTREERAERE - WA

Relativa Cost of Fising Dafects.

R ResearchGate
IBM System Science Institut

S gema.unesa.acid
Drustevni nafouknout Teor

| -
That Saves Money
%% Functionize

The Cost of Finding Bugs L.

Fixing Bugs - DZone

- o

i

Testbytes
What is a Software Bug? C.

Retire o o s oo v
aaction

-
~:_-Ill

@ Facebook

SQA Bangladesh - SQA Stu...

(Gosta of Gorrecting Detects

1

R ResearchGate
Cost of Fixing a Defect [9] |

¥
o I
Ii
s
Fd

Requirements /
Architecture

Integration /

Coding Component Testing

System /
Acceptance
Testing

Production /
Post-release

HE >
N THE RELATIVE COST
OF FIXING DEFECTS
R ResearchGate
3. exponentially rising cost..
e s m W .

@ Segue Technologies
The Rising Costs of Defect

Retutve Cost - b, based om detetio tme.

=1 24 EfficientlP
m I Ensuring High Quality Softw...

|
Oraicgmant Ut Tass. o=
B Dark Views
Software Development Cost.

el Edureka
Bugs in Software Testing —

8 Rafaela Azevedo
What is the cost of a bug? ...

Key Design Goals of Rust, But...

< Security: shift the bug detection phase to compile time
> Memory safety
> Concurrency safety
> No undefined behaviors

< Efficiency: zero-cost abstraction, no garbage collection

Efficiency
Security /S

Usability

Rust has built a Prosperous Ecosystem

Apps (Operating System Database Other Apps
)
To:ck (Redox @ © surrealDB || A sevo LepiSs
- TiKV burn = sSDOLANA
14&is Theseus @ influxdb ndraDB €D deno ¥ BEVY
3rd-party Lib

Concurrency

Web-related

&) Actix

3 tokio rayon

Other Libs
serde ©irkyv

J

thiserror
\

J

Official Rust @

@ O

. . ﬂ Ru_st for Linux _
Adopted by Linux and Windows 29, I

From: ojeda@kernel.org
To: Linus Torvalds <torvalds@linux-foundation.org>, (] © T
Greg Kroah-Hartman <gregkh@linuxfoundation.org> II@R@ GO gle
Cc: rust-for-linux@vger.kernel.org, linux-kbuild@vger.kernel.org,
linux-doc@vger.kernel.org, linux-kernel@vger.kernel.org, = (:) torvalds / linux
Miguel Ojeda <ojedagkernel.org>
Subject: [PATCH ©@/13] [RFC] Rust support
Date: Wed, 14 Apr 2021 20:45:51 +8268 [thread overview] linux/ rust /(0
Message-ID: <20210414184604.23473-1-0jeda@kernel.org> (raw)

<> Code I Pullrequests 307 (& Actions [0 Projects

@& ojeda rust: docs: fix logo replacement @8

From: Miguel Ojeda <ojeda@kernel.org>

Name
Some of you have noticed the past few weeks and months that ™
a serious attempt to bring|a second language ho the kernel was

being forged. We are finally here, with an RFC that adds support W alloc
for Rust to the Linux kernel. M bindings
. * - . . . -
This cover letter is fairly long, since there are quite a few topics rerne!
[—

to describe, but I hope it answers as many questions as possible

before the discussion starts. .. : Lo
. microsoft / windows-rs

If you are interested in following this effort, please join us
in the mailing list at:

l- kennykerr Optimize tick timming v last week 91,228
FUSt"FOr"linUX@Vger' .kernel. org M cargo Update to riddle and metadat.. 5 months ago
W github Simplify metadata reader (#26... 2 weeks ago
and take a look at the project itself at: - _
M crates Optimize tick trimming (#2689) last week
h‘t'tps . //‘githUb . com/ Rust -'For‘- Linux I docs Provide individual crate readm... last month
3 .gitattributes Consolidate code generation (.. 4 months ago
Cheers 3 [.gitignore Minor refactoring following #.. 4 months ago
Mlguej‘ 5 cargotoml Rust edition 2021 and version .. 3 months ago
H li - .o Adjust i | t for G.. last y
https://lore.kernel.org/lkml/20210414184604.23473-1-ojeda@kernel.org/ B feense-apac.. Adjust license placement for e
. . [3 license-mit Adjust license placement for G.. last year
https://github.com/Rust-for-Linux
[rustfmttoml Introduce simpler gen2 crate f... 2 years ago

https://github.com/microsoft/windows-rs

Why Scientists Are Turning to Rust? By Nature

High Ergonomic to Easy
Performance Use Debugging

Johannes Koster, Duisburg-Essen University ~ Heng Li, Harvard Medical School

Compare millions of sequence reads Tested multiple languages on a biology task
against billions of genetic bases to identify that involved parsing 5.7 million records.
genomic variants Rust edged out C to take the top spot.

Luiz Irber, University of California, Davis Rob Patro, University of Maryland
Genomic searches and taxonomic profiling Analyze transcript-level abundance

estimates from RNA-seq data

° https://www.nature.com/articles/d41586-020-03382-2

Scientific Computing in Rust 2023

Scientific Computing in Rust 2023
13-14 July 2023

Scientific Computing in Rust 2023

The Scientific Computing in Rust 2023 workshop took plac O rg anisers
and 17:00 BST, with over 100 people joining the workshoy

This workshop was held virtually and was free to attend.
P y Timo Betcke

YouTube.
Timo is a professor of computational mathematics at University College London.
He is working on developing rlst (Rust linear solver toolbox), a library for dense
. and sparse matrix routines; and bempp-rs, a Rust-based boundary element method
Timetable library.

The Scientific Computing in Rust 2023 workshop feature
minute talks by workshop attendees. The full schedule for
talks page. Jed Brown
The talks were be complimented by informal discussion ¢
meet and talk to speakers and other attendees.

@The majority of the talks were be recorded and are gradual
O

https://scientificcomputing.rs

Jed is a professor of computer science at CU Boulder. Jed maintains Rust crates
for MPI, PETSc, and 1ibCEED. He is interested in applying Rust and Enzyme in
computational science and engineering, especially computational mechanics.

4 jed .brown@colorado.edu

. Security of Rust

Memory safety
Concurrency safety
No undefined behaviors

Memory Safety

< A security notion stronger than type safety
< Types of memory-safety bugs:
» Out-of-bound read
» Out-of-bound write (stack smashing, heap overflow)
> Dangling pointer (use-after-free, double free)
» Concurrency issue

<» Most dangerous software vulnerabilities (by MITRE, 2023)

Rank ID Name
1 CWE-787 | Out-of-bounds Write
4 CWE-416 | Use After Free
7 CWE-125 | Out-of-bounds Read
12 CWE-476 | NULL Pointer Dereference
21 CWE-362 | Concurrent Execution using Shared Resource with Improper Synchronization (‘Race Condition')
36 CWE-401 | Missing Release of Memory after Effective Lifetime

E Source: https://cwe.mitre.org/top25/archive/2023/2023 top25_list.html

Why Heap Bugs are Dangerous? UAF as an Example

p1 \ header header
1. free(pl) bin >

\ 4

forward ptr

Add the block of *p1 to the free list

p1 \ header
2. write(p1) bin » forward ptr —{ arbitrary addr
Attackers modify the forward pointer through p1
3. p2 =malloc() [bin » arbitrary addr

Remove the block from the list; now bin points to the arbitrary address

4. p3 = malloc() p3

\ 4

arbitrary addr

p3 points to the arbitrary address

forward ptr — -~

Detecting UAF is Hard: via Allocator Design

< Option 1: prevent writing the dangling pointer p1

2. write(p1)

pl

L\

bin

header

>

forward ptr

A

- arbitrary addr

Problem: incur overhead during each pointer access

< Option 2: prevent adding invalid blocks to the free list

3. p2 = malloc()

bin

A\ 4

arbitrary addr

How to design an efficient and robust mechanism?

Detecting UAF is Hard: via Static Analysis

< Alias analysis is NP-Hard
> Hamiltonian path problems => Flow-insensitive may-alias analysis

0 Q 9 v4 = &v5
v2 = &v4
:> v3 =&v4 kAk*k*yl=v57?

o 9 v2 = &v3
vl = &v2
Hamiltonian Path Problem May-Alias Analysis

» More complicated alias analysis problems:
Flow-sensitive, path-sensitive, control-sensitive, context-sensitive...
Raw pointer, point-to
Concurrent code

@ [Horwitz'97] Susan Horwitz, Precise Flow-Insensitive May-Alias Analysis is NP-Hard, 1997

Rust Tackles the Problem via Ownership

<» Each object is owned by one variable

<»Ownership can be moved or borrowed

> Mode of borrowing: immutable/mutable

let mut alice = Box::new(1); alice owns the Box object
let bob = alice;

println!("alice:{}", alice);

move the ownership from alice to bob

let mut alice = Box::new(1);
let bob = &mut alice; bob borrows the ownership
**bob = **bob + 1;

bob is dead; return the ownership
println!("alice:{}", alice);

< Exclusive mutability principle: an object cannot be both
mutable and shared at any program points. How?

Why the Approach is Efficient?

<» Compute the 'minimum’ liveness of each variable

< Avoid hard alias-analysis problems
> No need to track multi-level aliases
> The mutability does not propagate

live variable analysis live variables
let mut a = 1: (backward) with borrow constraint
let mut pl = &a; {a} {a}
{a, p1} {a, p1}
let mut g1 = &mut pil; tp1, p2} 3, p1, p2}
let q2 = &p2; {p2} {a, p2}
borrow constraint: 'a > 'p2
@ @ O mutable variable
e O immutable variable
@ @ —> immutable borrow
— mutable borrow

Limitations of Ownership

< We may need both shared & mutable, e.g., double-linked list

next hext next
prev prev <«—— prev

struct Node {
val: u64,

struct Node {

val: u64,
prev: Option<Weak<RefCell<Node>>>,
next: Option<Weak<RefCell<Node>>>,

next: *mut Node,
prev: *mut Node,

Option 1: Shared Pointer Option 2: Raw Pointer
(with runtime cost) (unsafe code, bypass borrow check)

< Ownership also requires RAll because dropping unit data is bad
> Use unsafe code to create uninitialized object

Code Privilege Model

User Space

Operating System:

Ring Model System Call
Less Privileged Resource Management
Security objective of Rust:
- Memory safety
Rust: « Concurrency safety

Code Privilege Model Safe Code « No other undefined behaviors

v

Unsafe _ Interior unsafe: encapsulate
Code privileged code within safe APIs

Less Privileged May break the security protocol

Interior Unsafe: Encapsulate Unsafe Code within Safe APIs

<» Encourage developers not to use unsafe code directly

< However, APl soundness with unsafe code cannot be verified by

compiler
impl<T> Vec<T> { Project Code
//safe API encapsulation a8 iy
pub fn push(&mut self, value: T) { call
if self.len == self.buf.capacity() { safe APl safe API
self.buf.reserve for push(self.len); * *
} Library Code

unsafe {

let end = self.as _mut ptr().add(self.len);
ptr::write(end, value);
self.len += 1;

Code of Vec from Rust std-lib

Concurrency Safety

“»Non-atomic code is vulnerable to race condition

Reg Memory Reg
load
load
add copy of x X
copy of x add
store

store
|

int global cnt =

void *mythread(void *in) { globalscnt++; }

assert (pthreadecreats (&tid[0], NULL, mythread, NULL)==0);
assert (pthreadecreats (&tid[1], NULL, mythread, NULL)==0);

pthread _join(tid[@], NULL);
pthread_join(tid[1], NULL);
assert(global cnt==2);

Data Sharing Among Threads in Rust

mut x =
tid = thread::spawn(move|| { move the ownership or copy the value
x = 10; copied x
println!("x = {}", x); //x = 16
1)
tid.join() .unwrap();
println!("x = {}", x); // x= 1
let mut x = Box::new(1l);
//let mut y = x.clone();
let tid = thread::spawn(move|| { move the ownership of x to the thread

*X = 10;

println!("spawn: x = {}", X);

1)
tid.join().unwrap();

println!("main: x= {}", x); lllegal to access x

Declare Types with Send/Sync Trait (unsafe)

< Send Trait: The type can be transferred (moved) between threads
> For types of Copy trait, make a copy of the object
> For non-copy, transfer the ownership

< Sync Trait: The type is safe to be referenced from multiple threads

> Any type T is Sync if &T is Send

> Sync is usually more rigid than Send

< Raw pointers are neither Send or Sync by default

Thread 1 Thread 2 Thread 1 Thread 2

move

v

owner \) mut ref \ ref

Heap object Heap i lock |

Other Reliability Features

< Prevent dangling pointer via lifetime specification
< Perform boundary check for slice/vector

< Prevent false monomorphism via trait bound

< Enforce error handling via Monad

< Check integer overflow in debug mode

\/
”’ L

An Example

"Compare the performance of matrix multiplication with different
languages”

Python: done!

def matrix_multiply(matrix):

R: dOﬂE! n = len{matrix)

Java. done| result = [[@ for _ in range(n)] for _ in range(n)]

matrix® = generate_random_matrix(n)

C++: done!
for i in range(n):

for j in range(n):

GO: done! for k in range(n):

result[i] [j] += matrix[i] [k] * matrix@[k][j]

Rust: panic...

return result

Finished dev [unoptimized + debuginfo] target(s
Runnina +nrn9+1dphnn1mn+mn1 14 104"

thread 'main’ panlcked at attempt to add with overflow , Isrc/main.rs:91:17

P e e m ey e m e e

MOt TUT WLtIT RUST DACKTRACC=T"—enviTomment vartab e to display a backtrace

dgaishuijiaoladeMacBook—-Pro matmul %

Trust Rust with Reservations

Date Mon, 1% Sep 2022 15%:05:23 +0100
From Wedson Almeida Filho <>
Subject Re: [PATCH w3 12/27] rust: add “kernel® crate

"D Rust for Linux

QOrganization for adding support for the Rust language to the
& ‘ y A 456 followers [rust-for-linux@vger kernel.org

We generally hawve two routez to avoid undefined behaviour: detect at

Wedson Alme|da F||ho compile time {and fail compilation) or at runtime (and stop things
before they gzo too far). The former, while feasible, would require some
@Rust for Linux static analysl or passing tokens as arguments to guarantee that we' re in

sleepable context when sleeping (all ellided at compile time, =o

zero—cost in terms of run—time performance), but likely painful to
pProgram use.

. Tou need to realize that
Linus Torvalds
fa) reality trumps fantasy

(b} kernel needs trump any Bust needs

COr, you know, if you can’t deal with the rules that the kernel
requires, then just don’t do kernel programming.

Becauze in the end it really iz that zimple. I really need wou to
underztand that Eust in the kernel iz dependent on *kernel#* rulez. HNot
zome other random rulez that exist elzewhere.

Lim=

"D Rust for Linux

QOrganization for adding support for the Rust language to

& ‘ y A 456 followers [rust-for-linux@vger.kernel.org

Wedson Almeida Filho

While I disagree with zome of what wou write., the point iz takeh.

But I won't giwve up on Bust guarantees just yet, I'11 try to find
ergonomic ways to enforce them at compile time.

Thanlks=,
—Wed=zon

Linus Torvalds If wou cannot get over the fact that the kernel may hawve other

requirement= that trump any lansuage standards, we really can’t work
together.

https://lkml.org/lkm|/2022/9/19/1105#1105.php

I1l. Efficiency of Rust

Zero Cost Abstraction

What you don’t use, you don’t pay for. i LL,

What you do use, you couldn’t hand-code any better.

-- Bjarne Stroustrup
<=

There are no Zero Cost Abstractions
-- Chandler Carruth @ CppCon 2019

@ Bjarne Stroustrup, "The Design and Evolution of C++." 1994,

Example of Abstractions

< Dynamic memory management: garbage collection or manual?
< Polymorphism: compile-time binding or dynamic dispatch?

< Functions: inline or not?

R

” L

Comparison Study: Mandelbrot Set

f.(z)=z*+c

5
0 ﬂfi—/

100 500 1000 5000 10000

=@ C++ =@=G0 Rust —e=—Java —e—js Python —e=—R

Task
(resolution)
100
500
1000
5000

a 10000

C++

0.00352
0.0581

0.23
5.43
22.3

Rust

0.00354
0.0663
0.248

6.11
24.4

Go

0.00404

0.07

0.258

6.06
24.4

Java is Python R
(numpy) (matrix)
0.0542 0.0631 0.183 0.374
0.197 0.204 1.63 6.55
0.613 0.616 8.26 28.3
9.38 39.1 240 889

Comparison Study: Matrix Multiplication

100
90
80
70
60
50
40
30
20

10 /J’

0 C C C Q=

1 2 3 4 5 6
~o—C++ =o=Python R —e—Java =e—Go rust
(dim-l’-"ars;)kun d) C++ Python R Java Go Rust
10*10 0.924 0.043 0.109 0.004 0.045 0.262
10*100 0.016 0.042 0.116 0.007 0.004 0.266
10*1000 0.061 0.3667 0.191 0.0397 0.006 0.280
100*10 0.074 0.644 0.745 0.061 0.028 0.319

100*100 0.566 8.639 6.427 0.565 0.236 1.005
100*1000 5.590 448.915 64.129 5.734 2.294 4.993

Optimization Study by Crichton: k-CorrSet problem

“given a size k, which set of k questions has the highest correlation with
overall performance?”

{
"user": "5ea2c2e3-4dc8-4a5a-93ec-18d3d9197374",

"question": "7d42b17d-77ff-4e0a-9a4d-354ddd7bbc57",
"score": 1

b

/*...moredata... */

1) Python => Rust: speedup 8 times

2) Change HashMap to Vec to avoid hash: speedup 4*6 times

3) Disable boundary checks with get_unchecked(): speedup 1.16 times
4) Use bit-set for sparse data handling: speedup 3.4 times

5) Use ass SIMD (std::simd): speedup 34 times

6) Allocation at the beginning: speedup 1.24 times

a https://willcrichton.net/notes/k-corrset/

Parallel
+SIMD

#![feature(portable simd)]
use std::simd: :f32x4;
fn main() {
let a = f32x4::splat(10.0);

let b = f32x4::from_array([1.0, 2.0, 3.0, 4.0]);
println! ("{:?}", a + b);

<» Multi-threading with Rayon: no data races

use rayon::prelude::*;
fn sum_of squares(input: &[i32]) -> i32 {

//input.iter().map([&1] 1 * 1) .sum()
input.par_iter().map(|&i| i * i) .sum()

https://doc.rust-lang.org/stable/std/simd/struct.Simd.html

IV. Usability

What Makes Rust Difficult?

< Confusing rules for memory safety
> borrow check
> lifetime inference

< Unfamiliar with the paradigm or design patterns
> trait (duck typing)
> closure (functional)
> macro
> ...

Confusing Rules: Borrow Check

1 #![allow(unused variables)]

5 19 let r1 = &mut outl.al[0];
3 struct Inner { inner: us } 20 let r3 = &mut out2.a.0;
4 struct Outerl { a: [Inner; 2] } 21 let r2 = &outl.al[1];

5 struct Outer2 { a: (Inner, Inner) } 22 let rd = &out2.a.1;

6 23 *rl += 1;

7 fn test(inl: &mut Inner, in2: &Inner){} 24 *r3 += 1;

z fn mainO) { 25 println!("{:?}", r2);
10 let mut outl = Outerl { a: 26 println!("i:?}", rd) ;
11 [Inner {inner: 1}, Inner {inner: 3}]};

12 let mut out2 = Outer2 { a:

13 (Inner {inner: 1}, Inner {inner: 3})};

14 - test(&mut outl.a[0], &outl.al1l);@

15 + let (first, rest) = outl.a.split_first_mut().unwrap();

16 + test(first, &rest[0]);

17 test (&mut out2.a.0, &out2.a.1); @

18 } PC-1 changes to PC-3

@ Shuofei Zhu, et al. "Learning and programming challenges of rust: A mixed-methods study." ICSE 2022.

Confusing Rules: Lifetime

1 struct Foo {} 10 fn f4(0) {

2 struct Bar2<'b> { x: &'b Foo,} 11 let foo = Foo {};

3 12 let mut bar2 = Bar2 {
4 impl<'b> Bar2<'b> { 13 x: &foo };

5 - fn f(&'b mut self)-> &'b Foo { 14 bar2.f();

6 + fn f(&mut self)-> &'b Foo { 15 let z = bar2.f();

7 self.x 16 }

8 }

9

e Shuofei Zhu, et al. "Learning and programming challenges of rust: A mixed-methods study." ICSE 2022.

Design Pattern: Trait

struct Sheep { name: &'static str }
trait Animal {
fn new(name: &'static str) -> Self;
fn name(&self) -> &'static str;
fn talk(&self) -> &'static str;

¥

impl Sheep {

fn shear(&mut self) {

¥
¥

impl Animal for Sheep {

¥

- D Quack .

SN

= ’/—:{ix p

- ¢ Q
= |

“If it looks like a duck, swims
like a duck, and quacks like a

duck, then it probably is a
duck”

Design Pattern: Functional Programming

fn is_odd(n: u32) -> bool {
n%»2-==1

}

fn main() {
println! ("Find the sum of all the squared odd numbers under 1000");
let upper = 1000;

let sum of squared odd numbers: u32 =
(0..).map(|n| n * n) // ALL natural numbers squared
.take _while(|&n_squared| n_squared < upper)
.filter(|&n_squared| is _odd(n_squared))
.sum();
println! ("{}", sum_of squared _odd numbers);

https://doc.rust-lang.org/rust-by-example/fn/hof.html

Design Pattern: Macros

// find min!" will calculate the minimum of any number of arguments.
macro_rules! find min {

// Base case:
($x:expr) => ($x);
// “$x° followed by at Lleast one "3y,
($x:expr, $($y:expr),+) => (
// Call "“find min!~ on the tail "%y
std::cmp::min($x, find min!($(%y),+))

}

fn main() {
println! ("{}", find min!(1));
println! ("{}", find min!(1 + 2, 2));
println! ("{}", find _min!(5, 2 * 3, 4));

https://doc.rust-lang.org/rust-by-example/macros/repeat.html

V. Summary

Summary

< Attractive features of Rust:
> Security: memory safety, concurrency safety
> Reliability: checked add, boundary check, monad,...
> Efficiency: zero cost abstraction
<* Problems of Rust:
> Usability
> Verifiability of security

< The community/ecosystem of Rust grows at an incredible pace

Thanks for Watching

Q&A

xuh@fudan.edu.cn

	幻灯片 1: Demystifying Rust: Features and Trends
	幻灯片 2: Outline
	幻灯片 3: I. Overview of Rust
	幻灯片 4: Origination of Rust
	幻灯片 5: A Famous Figure...
	幻灯片 6: Key Design Goals of Rust, But...
	幻灯片 7: Rust has built a Prosperous Ecosystem
	幻灯片 8: Adopted by Linux and Windows
	幻灯片 9: Why Scientists Are Turning to Rust? By Nature
	幻灯片 10: Scientific Computing in Rust 2023
	幻灯片 11: II. Security of Rust
	幻灯片 12: Memory Safety
	幻灯片 13: Why Heap Bugs are Dangerous? UAF as an Example
	幻灯片 14: Detecting UAF is Hard: via Allocator Design
	幻灯片 15: Detecting UAF is Hard: via Static Analysis
	幻灯片 16: Rust Tackles the Problem via Ownership
	幻灯片 17: Why the Approach is Efficient?
	幻灯片 18: Limitations of Ownership
	幻灯片 19: Code Privilege Model
	幻灯片 20: Interior Unsafe: Encapsulate Unsafe Code within Safe APIs
	幻灯片 21: Concurrency Safety
	幻灯片 22: Data Sharing Among Threads in Rust
	幻灯片 23: Declare Types with Send/Sync Trait (unsafe)
	幻灯片 24: Other Reliability Features
	幻灯片 25: An Example
	幻灯片 26: Trust Rust with Reservations
	幻灯片 27: III. Efficiency of Rust
	幻灯片 28: Zero Cost Abstraction
	幻灯片 29: Example of Abstractions
	幻灯片 30: Comparison Study: Mandelbrot Set
	幻灯片 31: Comparison Study: Matrix Multiplication
	幻灯片 32: Optimization Study by Crichton: k-CorrSet problem
	幻灯片 33: Parallel
	幻灯片 34: IV. Usability
	幻灯片 35: What Makes Rust Difficult?
	幻灯片 36: Confusing Rules: Borrow Check
	幻灯片 37: Confusing Rules: Lifetime
	幻灯片 38: Design Pattern: Trait
	幻灯片 39: Design Pattern: Functional Programming
	幻灯片 40: Design Pattern: Macros
	幻灯片 41: V. Summary
	幻灯片 42: Summary
	幻灯片 43: Thanks for Watching

