
Hui Xu

School of Computer Science

Fudan University

Demystifying Rust: Features and Trends

10/29/2023
1

Rust语言：功能特性和趋势分析

Outline

2

I. Overview

II. Security

III. Efficiency

IV. Usability

V. Summary

I. Overview of Rust

3

Origination of Rust

4
How Rust Went from a Side Project to the World's Most-Loved Programming Language, MIT Technology Review, 2023

2006 2011 2015

Graydon Hoare
(broken elevator)

Self-hosting
(OCaml->Rust)

First stable
release

2020 2021

Layoff by
Mozilla

AWS, Huawei, Google,
Microsoft, Mozilla…

2009

Supported
by Mozilla

Oxidize

A Famous Figure...

5
https://dzone.com/articles/the-exponential-cost-of-fixing-bugs

Key Design Goals of Rust, But...

6

❖Security: shift the bug detection phase to compile time

➢Memory safety

➢Concurrency safety

➢No undefined behaviors

❖Efficiency: zero-cost abstraction, no garbage collection

Security

Efficiency

Usability

VS

Rust has built a Prosperous Ecosystem

7

Official Rust

Compiler Std-lib Cargo

Operating System Database

IndraDB

Other Apps

influxdb

Servo

deno

3rd-party Lib

Apps

IDE

Concurrency

rayontokio

Web-related Other Libs

hyper thiserror

Adopted by Linux and Windows

8
https://lore.kernel.org/lkml/20210414184604.23473-1-ojeda@kernel.org/
https://github.com/Rust-for-Linux
https://github.com/microsoft/windows-rs

Why Scientists Are Turning to Rust? By Nature

9
https://www.nature.com/articles/d41586-020-03382-2

Johannes Köster, Duisburg-Essen University
Compare millions of sequence reads
against billions of genetic bases to identify
genomic variants

Heng Li, Harvard Medical School
Tested multiple languages on a biology task
that involved parsing 5.7 million records.
Rust edged out C to take the top spot.

High
Performance

Ergonomic to
Use

Luiz Irber, University of California, Davis
Genomic searches and taxonomic profiling

Rob Patro, University of Maryland
Analyze transcript-level abundance
estimates from RNA-seq data

Easy
Debugging

Scientific Computing in Rust 2023

10

https://scientificcomputing.rs

II. Security of Rust

Memory safety

Concurrency safety

No undefined behaviors

11

Memory Safety

12

❖A security notion stronger than type safety

❖Types of memory-safety bugs:
➢Out-of-bound read

➢Out-of-bound write (stack smashing, heap overflow)

➢Dangling pointer (use-after-free, double free)

➢Concurrency issue

❖Most dangerous software vulnerabilities (by MITRE, 2023)

Rank ID Name
1 CWE-787 Out-of-bounds Write
4 CWE-416 Use After Free
7 CWE-125 Out-of-bounds Read

12 CWE-476 NULL Pointer Dereference
21 CWE-362 Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')
36 CWE-401 Missing Release of Memory after Effective Lifetime

Source: https://cwe.mitre.org/top25/archive/2023/2023_top25_list.html

Why Heap Bugs are Dangerous? UAF as an Example

13

1. free(p1) bin forward ptr forward ptr
headerheader

...

p1

arbitrary addrbin forward ptr
header

p1

2. write(p1)

3. p2 = malloc() bin arbitrary addr

4. p3 = malloc() p3 arbitrary addr

Add the block of *p1 to the free list

Remove the block from the list; now bin points to the arbitrary address

p3 points to the arbitrary address

Attackers modify the forward pointer through p1

Detecting UAF is Hard: via Allocator Design

14

❖Option 1: prevent writing the dangling pointer p1

arbitrary addrbin forward ptr
header

p1

2. write(p1)

Problem: incur overhead during each pointer access

❖Option 2: prevent adding invalid blocks to the free list

How to design an efficient and robust mechanism?

3. p2 = malloc() bin arbitrary addr

Detecting UAF is Hard: via Static Analysis

15

❖Alias analysis is NP-Hard

➢Hamiltonian path problems => Flow-insensitive may-alias analysis

➢More complicated alias analysis problems：
 Flow-sensitive, path-sensitive, control-sensitive, context-sensitive…

 Raw pointer, point-to

 Concurrent code

[Horwitz'97] Susan Horwitz, Precise Flow-Insensitive May-Alias Analysis is NP-Hard, 1997

v4 = &v5
v2 = &v4
v3 = &v4
v2 = &v3
v1 = &v2

May-Alias Analysis

2 3

4 5

1

Hamiltonian Path Problem

****v1 = v5 ?

Rust Tackles the Problem via Ownership

16

❖Each object is owned by one variable

❖Ownership can be moved or borrowed

➢Mode of borrowing: immutable/mutable

let mut alice = Box::new(1);
let bob = alice;
println!("alice:{}", alice);

let mut alice = Box::new(1);
let bob = &mut alice;
**bob = **bob + 1;
println!("alice:{}", alice);

alice owns the Box object

move the ownership from alice to bob

bob borrows the ownership

bob is dead; return the ownership

❖Exclusive mutability principle: an object cannot be both

mutable and shared at any program points. How?

Why the Approach is Efficient?

17

❖ Compute the 'minimum' liveness of each variable

❖ Avoid hard alias-analysis problems

➢No need to track multi-level aliases

➢ The mutability does not propagate

let mut a = 1;
let mut p1 = &a;
let p2 = &mut a;
let mut q1 = &mut p1;
let q2 = &p2;

p2

p1

a

q1

q2

mutable variable

immutable variable

mutable borrow

immutable borrow

live variable analysis
(backward)

{a}
{a, p1}
{p1, p2}
{p2}

borrow constraint: 'a > 'p2

live variables
with borrow constraint

{a}
{a, p1}
{a, p1, p2}
{a, p2}

Limitations of Ownership

18

❖We may need both shared & mutable, e.g., double-linked list

next
prev

next
prev

next
prev

struct Node {
 val: u64,
 prev: Option<Weak<RefCell<Node>>>,
 next: Option<Weak<RefCell<Node>>>,
}

Option 1: Shared Pointer
(with runtime cost)

struct Node {
 val: u64,
 next: *mut Node,
 prev: *mut Node,
}

Option 2: Raw Pointer
(unsafe code, bypass borrow check)

❖Ownership also requires RAII because dropping unit data is bad

➢ Use unsafe code to create uninitialized object

Code Privilege Model

19

Operating System:
Ring Model Kernel

User Space

Resource Management

System Call

Less Privileged

May break the security protocol

Security objective of Rust:

• Memory safety

• Concurrency safety

• No other undefined behaviors

Unsafe
Code

Safe Code
Rust:
Code Privilege Model

Less Privileged

Interior unsafe: encapsulate
privileged code within safe APIs

Interior Unsafe: Encapsulate Unsafe Code within Safe APIs

20

❖Encourage developers not to use unsafe code directly

❖However, API soundness with unsafe code cannot be verified by

compiler
impl<T> Vec<T> {
 //safe API encapsulation
 pub fn push(&mut self, value: T) {
 if self.len == self.buf.capacity() {
 self.buf.reserve_for_push(self.len);
 }

unsafe {
 let end = self.as_mut_ptr().add(self.len);

ptr::write(end, value);
 self.len += 1;

}
 }
}

Code of Vec from Rust std-lib

Project Code

Library Code

safe API
unsafe

safe API
unsafe

call

Concurrency Safety

21

❖Non-atomic code is vulnerable to race condition

thread1 thread2

load

xadd

store

load

add

store

Memory RegReg

copy of x
copy of x

int global_cnt = 0;
void *mythread(void *in) { global_cnt++; }
assert(pthread_create(&tid[0], NULL, mythread, NULL)==0);
assert(pthread_create(&tid[1], NULL, mythread, NULL)==0);
pthread_join(tid[0], NULL);
pthread_join(tid[1], NULL);
assert(global_cnt==2);

Data Sharing Among Threads in Rust

22

let mut x = 1;
let tid = thread::spawn(move|| {
 x = 10;
 println!("x = {}", x); //x = 10
});
tid.join().unwrap();
println!("x = {}", x); // x= 1

copied x

move the ownership or copy the value

let mut x = Box::new(1);
//let mut y = x.clone();
let tid = thread::spawn(move|| {
 *x = 10;
 println!("spawn: x = {}", x);
});
tid.join().unwrap();
println!("main: x= {}", x);

move the ownership of x to the thread

Illegal to access x

Declare Types with Send/Sync Trait (unsafe)

❖ Send Trait: The type can be transferred (moved) between threads

➢ For types of Copy trait, make a copy of the object

➢ For non-copy, transfer the ownership

❖ Sync Trait: The type is safe to be referenced from multiple threads

➢ Any type T is Sync if &T is Send

➢ Sync is usually more rigid than Send

❖ Raw pointers are neither Send or Sync by default

object

Thread 1 Thread 2

Heap

owner

move

object

Thread 1 Thread 2

Heap

mut ref ref

lock

Other Reliability Features

24

❖Prevent dangling pointer via lifetime specification

❖Perform boundary check for slice/vector

❖Prevent false monomorphism via trait bound

❖Enforce error handling via Monad

❖Check integer overflow in debug mode

❖...

An Example

25

"Compare the performance of matrix multiplication with different
languages"

Python: done!

R: done!

Java: done!

C++: done!

Go: done!

Rust: panic…

Trust Rust with Reservations

26

https://lkml.org/lkml/2022/9/19/1105#1105.php

Wedson Almeida Filho
@Rust for Linux

Linus Torvalds

Wedson Almeida Filho

Linus Torvalds

III. Efficiency of Rust

27

Zero Cost Abstraction

28

What you don’t use, you don’t pay for.

What you do use, you couldn’t hand-code any better.

Bjarne Stroustrup, "The Design and Evolution of C++." 1994.

-- Bjarne Stroustrup

There are no Zero Cost Abstractions

-- Chandler Carruth @ CppCon 2019

Example of Abstractions

29

❖Dynamic memory management: garbage collection or manual?

❖Polymorphism: compile-time binding or dynamic dispatch?

❖Functions: inline or not?

❖...

Comparison Study: Mandelbrot Set

30

𝑓𝑐 𝑧 = 𝑧2 + 𝑐

Task
(resolution)

C++ Rust Go Java js
Python

(numpy)
R

(matrix)

100 0.00352 0.00354 0.00404 0.0542 0.0631 0.183 0.374

500 0.0581 0.0663 0.07 0.197 0.204 1.63 6.55

1000 0.23 0.248 0.258 0.613 0.616 8.26 28.3

5000 5.43 6.11 6.06 9.38 39.1 240 889

10000 22.3 24.4 24.4 - - - -

0

5

10

15

20

25

30

35

40

45

50

100 500 1000 5000 10000

C++ Go Rust Java js Python R

Comparison Study: Matrix Multiplication

31

Task
(dim*round)

C++ Python R Java Go Rust

10*10 0.924 0.043 0.109 0.004 0.045 0.262

10*100 0.016 0.042 0.116 0.007 0.004 0.266
10*1000 0.061 0.3667 0.191 0.0397 0.006 0.280
100*10 0.074 0.644 0.745 0.061 0.028 0.319

100*100 0.566 8.639 6.427 0.565 0.236 1.005
100*1000 5.590 448.915 64.129 5.734 2.294 4.993

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6

C++ Python R Java Go rust

Optimization Study by Crichton: k-CorrSet problem

32 https://willcrichton.net/notes/k-corrset/

{
"user": "5ea2c2e3-4dc8-4a5a-93ec-18d3d9197374",
"question": "7d42b17d-77ff-4e0a-9a4d-354ddd7bbc57",
"score": 1

},
/* ... more data ... */

“given a size k, which set of k questions has the highest correlation with
overall performance?”

1) Python => Rust: speedup 8 times
2) Change HashMap to Vec to avoid hash: speedup 4*6 times
3) Disable boundary checks with get_unchecked(): speedup 1.16 times
4) Use bit-set for sparse data handling: speedup 3.4 times
5) Use ass SIMD (std::simd): speedup 34 times
6) Allocation at the beginning: speedup 1.24 times

Parallel

33

❖SIMD

#![feature(portable_simd)]
use std::simd::f32x4;
fn main() {
 let a = f32x4::splat(10.0);
 let b = f32x4::from_array([1.0, 2.0, 3.0, 4.0]);
 println!("{:?}", a + b);
}

https://doc.rust-lang.org/stable/std/simd/struct.Simd.html

❖Multi-threading with Rayon: no data races

use rayon::prelude::*;
fn sum_of_squares(input: &[i32]) -> i32 {

//input.iter().map(|&i| i * i) .sum()
input.par_iter().map(|&i| i * i) .sum()

}

IV. Usability

34

What Makes Rust Difficult?

35

❖Confusing rules for memory safety

➢borrow check

➢ lifetime inference

❖Unfamiliar with the paradigm or design patterns

➢trait (duck typing)

➢closure (functional)

➢macro

➢...

Confusing Rules: Borrow Check

36
Shuofei Zhu, et al. "Learning and programming challenges of rust: A mixed-methods study." ICSE 2022.

Confusing Rules: Lifetime

37
Shuofei Zhu, et al. "Learning and programming challenges of rust: A mixed-methods study." ICSE 2022.

Design Pattern: Trait

38

“If it looks like a duck, swims
like a duck, and quacks like a
duck, then it probably is a
duck”

struct Sheep { name: &'static str }
trait Animal {
 fn new(name: &'static str) -> Self;
 fn name(&self) -> &'static str;
 fn talk(&self) -> &'static str;
}

impl Sheep {
 fn shear(&mut self) {
 ...
 }
}

impl Animal for Sheep {
 ...
}

Design Pattern: Functional Programming

39

fn is_odd(n: u32) -> bool {
 n % 2 == 1
}
fn main() {
 println!("Find the sum of all the squared odd numbers under 1000");
 let upper = 1000;
 let sum_of_squared_odd_numbers: u32 =
 (0..).map(|n| n * n) // All natural numbers squared
 .take_while(|&n_squared| n_squared < upper)
 .filter(|&n_squared| is_odd(n_squared))
 .sum();
 println!("{}", sum_of_squared_odd_numbers);
}

https://doc.rust-lang.org/rust-by-example/fn/hof.html

Design Pattern: Macros

40

// `find_min!` will calculate the minimum of any number of arguments.
macro_rules! find_min {
 // Base case:
 ($x:expr) => ($x);
 // `$x` followed by at least one `$y,`
 ($x:expr, $($y:expr),+) => (
 // Call `find_min!` on the tail `$y`
 std::cmp::min($x, find_min!($($y),+))
)
}

fn main() {
 println!("{}", find_min!(1));
 println!("{}", find_min!(1 + 2, 2));
 println!("{}", find_min!(5, 2 * 3, 4));
}

https://doc.rust-lang.org/rust-by-example/macros/repeat.html

V. Summary

41

Summary

42

❖Attractive features of Rust:

➢Security: memory safety, concurrency safety

➢Reliability: checked add, boundary check, monad,...

➢Efficiency: zero cost abstraction

❖Problems of Rust:

➢Usability

➢Verifiability of security

❖The community/ecosystem of Rust grows at an incredible pace

Q & A

43

Thanks for Watching

xuh@fudan.edu.cn

	幻灯片 1: Demystifying Rust: Features and Trends
	幻灯片 2: Outline
	幻灯片 3: I. Overview of Rust
	幻灯片 4: Origination of Rust
	幻灯片 5: A Famous Figure...
	幻灯片 6: Key Design Goals of Rust, But...
	幻灯片 7: Rust has built a Prosperous Ecosystem
	幻灯片 8: Adopted by Linux and Windows
	幻灯片 9: Why Scientists Are Turning to Rust? By Nature
	幻灯片 10: Scientific Computing in Rust 2023
	幻灯片 11: II. Security of Rust
	幻灯片 12: Memory Safety
	幻灯片 13: Why Heap Bugs are Dangerous? UAF as an Example
	幻灯片 14: Detecting UAF is Hard: via Allocator Design
	幻灯片 15: Detecting UAF is Hard: via Static Analysis
	幻灯片 16: Rust Tackles the Problem via Ownership
	幻灯片 17: Why the Approach is Efficient?
	幻灯片 18: Limitations of Ownership
	幻灯片 19: Code Privilege Model
	幻灯片 20: Interior Unsafe: Encapsulate Unsafe Code within Safe APIs
	幻灯片 21: Concurrency Safety
	幻灯片 22: Data Sharing Among Threads in Rust
	幻灯片 23: Declare Types with Send/Sync Trait (unsafe)
	幻灯片 24: Other Reliability Features
	幻灯片 25: An Example
	幻灯片 26: Trust Rust with Reservations
	幻灯片 27: III. Efficiency of Rust
	幻灯片 28: Zero Cost Abstraction
	幻灯片 29: Example of Abstractions
	幻灯片 30: Comparison Study: Mandelbrot Set
	幻灯片 31: Comparison Study: Matrix Multiplication
	幻灯片 32: Optimization Study by Crichton: k-CorrSet problem
	幻灯片 33: Parallel
	幻灯片 34: IV. Usability
	幻灯片 35: What Makes Rust Difficult?
	幻灯片 36: Confusing Rules: Borrow Check
	幻灯片 37: Confusing Rules: Lifetime
	幻灯片 38: Design Pattern: Trait
	幻灯片 39: Design Pattern: Functional Programming
	幻灯片 40: Design Pattern: Macros
	幻灯片 41: V. Summary
	幻灯片 42: Summary
	幻灯片 43: Thanks for Watching

