
Fighting The Heap
War with Rust

Hui Xu

School of Computer Science

Fudan University

1

Outline

2

i. Research Background

ii. Dangling Pointer Detection

iii. Memory Leakage Detection

iv. Heap Exhaustion Handling

v. Summary

1. Research Background

Rust Ownership and Limitations

3

Most Dangerous Software Vulnerabilities (by MITRE, 2023)

4

Rank ID Name
1 CWE-787 Out-of-bounds Write
2 CWE-79 Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting')
3 CWE-89 Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection')
4 CWE-416 Use After Free
5 CWE-78 Improper Neutralization of Special Elements used in an OS Command ('OS Command Injection')
6 CWE-20 Improper Input Validation
7 CWE-125 Out-of-bounds Read
8 CWE-22 Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal')
9 CWE-352 Cross-Site Request Forgery (CSRF)

10 CWE-434 Unrestricted Upload of File with Dangerous Type
11 CWE-862 Missing Authorization
12 CWE-476 NULL Pointer Dereference
13 CWE-287 Improper Authentication
14 CWE-190 Integer Overflow or Wraparound
15 CWE-502 Deserialization of Untrusted Data
16 CWE-77 Improper Neutralization of Special Elements used in a Command ('Command Injection')
17 CWE-119 Improper Restriction of Operations within the Bounds of a Memory Buffer
18 CWE-798 Use of Hard-coded Credentials
19 CWE-918 Server-Side Request Forgery (SSRF)
20 CWE-306 Missing Authentication for Critical Function
21 CWE-362 Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')
22 CWE-269 Improper Privilege Management
23 CWE-94 Improper Control of Generation of Code ('Code Injection')
24 CWE-863 Incorrect Authorization
25 CWE-276 Incorrect Default Permissions
36 CWE-401 Missing Release of Memory after Effective Lifetime

Source: https://cwe.mitre.org/top25/archive/2023/2023_top25_list.html

Which vulnerabilities can be mitigated through language design?

Application independent ones, e.g., memory-safety bugs

Why Heap Bugs are Dangerous? UAF as an Example

5

1. free(p1) bin forward ptr forward ptr
headerheader

...

p1

arbitrary addrbin forward ptr
headerp1

2. write(p1)

3. p2 = malloc() bin arbitrary addr

4. p3 = malloc() p3 arbitrary addr

Add the block of *p1 to the free list

Remove the block from the list; now bin points to the arbitrary address

p3 points to the arbitrary address

Attackers modify the forward pointer through p1

Detecting UAF is Hard: via Allocator Design

6

❖Option 1: prevent writing the dangling pointer p1

arbitrary addrbin forward ptr
headerp1

2. write(p1)

Problem: incur overhead during each pointer access

❖Option 2: prevent adding invalid blocks to the free list

How to design an efficient and robust mechanism?

3. p2 = malloc() bin arbitrary addr

Detecting UAF is Hard: via Static Analysis

7

❖Alias analysis is NP-Hard

➢Hamiltonian path problems => Flow-insensitive may-alias analysis

➢More complicated alias analysis problems：
 Flow-sensitive, path-sensitive, control-sensitive, context-sensitive…

 Raw pointer, point-to

 Concurrent code

[Horwitz'97] Susan Horwitz, Precise Flow-Insensitive May-Alias Analysis is NP-Hard, 1997

v4 = &v5
v2 = &v4
v3 = &v4
v2 = &v3
v1 = &v2

May-Alias Analysis

2 3

4 5

1

Hamiltonian Path Problem

****v1 = v5 ?

Auto Heap Management: Rust Tackles the Problem via Ownership

8

❖Each object is owned by one variable

❖Ownership can be moved or borrowed

➢Mode of borrowing: immutable/mutable

let mut alice = Box::new(1);
let bob = alice;
println!("alice:{}", alice);

let mut alice = Box::new(1);
let bob = &mut alice;
**bob = **bob + 1;
println!("alice:{}", alice);

alice owns the Box object

move the ownership from alice to bob

bob borrows the ownership

bob is dead; return the ownership

❖Exclusive mutability principle: an object cannot be mutable and shared at one

program point. How?

Why the Approach is Efficient?

9

❖Compute the 'minimum' liveness of each variable

❖Avoid hard alias-analysis problems

➢No need to track multi-level aliases

➢The mutability does not propagate

let mut a = 1;
let mut p1 = &a;
let p2 = &mut a;
let mut q1 = &mut p1;
let q2 = &p2;

p2

p1

a

q1

q2

mutable variable

immutable variable

mutable borrow

immutable borrow

live variables

{a}
{a, p1}
{a, p1, p2}
{a,p2}

Limitations of Ownership

10

❖We may need both shared & mutable, e.g., double-linked list

next
prev

next
prev

next
prev

struct Node {
 val: u64,
 prev: Option<Weak<RefCell<Node>>>,
 next: Option<Weak<RefCell<Node>>>,
}

Option 1: Shared Pointer
(with runtime cost)

struct Node {
 val: u64,
 next: *mut Node,
 prev: *mut Node,
}

Option 2: Raw Pointer
(unsafe code, bypass borrow check)

❖Ownership also requires RAII because dropping unit data is bad

➢Use unsafe code to create uninitialized object

Empirical Study of Memory-Safety Bugs in Rust Projects

❖185 bugs reported before 2020-12-31 (all CVEs/Advisory DB + GitHub)

❖35/185 bugs involve bad drop issues caused by unsafe code

❖Memory leakage bugs are not included (not memory-safety issues)

“Memory-safety challenge considered solved? An in-depth study with all Rust CVEs”, TOSEM, 2022.

11

Our Research Efforts: Fight the Heap War with Rust

12

❖Dangling pointer detection: use-after-free, double free

❖Memory leakage detection: the opposite of dangling pointer

❖Design a better way to handle heap exhaustion risks

2. Dangling Pointer Detection

SafeDrop: Detecting memory deallocation bugs of Rust programs via static data-flow analysis, TOSEM,
2022.

13

Motivating Example: Dangling Pointer

14

fn genvec()->Vec<u8>{
 let mut s = String::from("a tmp string");
 //let mut s = ManuallyDrop::new(String::from("a tmp string"));
 let ptr = s.as_mut_ptr();
 unsafe{
 let v = Vec::from_raw_parts(ptr,s.len(),s.len());
 //panic!();
 //mem::forget(s);
 v
 }
}
fn main(){
 let v = genvec(); //v is dangling
 assert_eq!('a' as u8, v[0]);
}

create a temporary string s

create a Vec v pointing to s via unsafe

return v

drop s; v becomes dangling

accessing v causes use-after-free

Bug Analysis with Rust MIR

15

_1 = const <std::string::String as std::convert::From<&str>>
 ::from(const "a tmp string") -> bb2;

bb0:

_5 = &mut _1;
_4 = const <std::string::String as std::ops::DerefMut>::deref_mut(move _5)
-> [return: bb3, unwind: bb4];

resume;

bb2:

bb1:

_3 = &mut (*_4);
_2 = const core::str::<impl str>::as_mut_ptr(move _3)
-> [return: bb5, unwind: bb4];

bb3:

drop(_1)
-> bb1;

bb4:

_6 = _2;
_8 = &_1;
_7 = const std::string::String::len(move _8) -> [return: bb6, unwind: bb4];

bb5:

_10 = &_1;
_9 = const std::string::String::len(move _10) -> [return: bb7, unwind: bb4];

bb6:

return;

_0 = const std::vec::Vec::<u8>::from_raw_parts(move _6, move _7, move _9)
-> [return: bb8, unwind: bb4];

bb7:

drop(_1) -> bb9;//calling mem::forget(s) can remove this drop instruction.

bb9:

bb8:

Real-world programs could have more code here, and it may panic the program.

Bad drop of normal
execution

Bad drop of
exception
handling

drop(_0)

Abstraction of Bug Patterns

16

Var 1 Heap Object

create aliases

Var 1

Heap ObjectVar 2

• No aliases should be used or dropped
• Otherwise, positive

Var 3

Heap Object
Var 2

Var 3

drop(var1)

Var 1 Uninit Object

create aliases

Heap Object
Var 1

Var 2

Initialization done

• No aliases should be dropped
• Otherwise, positive

ownership

Uninit Object
Var 1

Var 2

Approach for Dangling Pointer Bug Detection

17

❖Requirements:

➢Effective: use-after-free, double free, drop unint memory

➢Precise: should not incur much false positives

➢Efficient: fast

❖Approach: path-sensitive analysis

1. Path Extraction 2. Alias Analysis 3. Pattern Detection

Approach:

18

❖Extract the spanning tree of each function:

➢Compute strongly-connected components with Tarjan Algorithm

➢Compute the may alias sets of each SCC

❖Refine the tree based on rules to handle conner cases

1. Path Extraction 2. Alias Analysis 3. Pattern Detection

Control-flow Graph Spanning Tree

Approach:

19

❖Our approximation rules:

➢Similar to Steensgaard, but ignore multi-level pointers

1. Path Extraction 2. Alias Analysis 3. Pattern Detection

❖Example:

Approach:

20

❖Field-sensitive and inter-procedural analysis

1. Path Extraction 2. Alias Analysis 3. Pattern Detection

inter-procedural

field-sensitive

update

{0.0.0, 1}

Approach:

21

1. Path extraction 2. Alias Analysis 3. Pattern Detection

Var 1 Heap Object

create aliases

Var 1

Heap ObjectVar 2

• No aliases should be used or dropped
• Otherwise, positive

Var 3

Heap Object
Var 2

Var 3

drop(var1)

Var 1 Uninit Object

create aliases

Heap Object
Var 1

Var 2

Initialization done

• No aliases should be dropped
• Otherwise, positive

Uninit Object
Var 1

Var 2

Experimental Results

22

❖Can detect all related CVEs with a low false positive rate

❖False positive: compiler intrinsic trait implementations are unavailable

➢Assume aliases among the arguments and return value

Experimental Results: Efficiency

23

❖Very small overhead compared to the original compilation

3. Memory Leakage Detection

rCanary: Detecting memory leaks across semi-automated memory management
boundary in Rust, arXiv, 2023.

24

Memory Leakage Problem

25

❖Consuming an ownership (leak) is safe in Rust

❖Taking an ownership or manual deallocation is unsafe

+
+

let mut buf = Box::new("123");
let ptr = Box::into_raw(buf); //consume the ownership
//fix 1: unsafe { let _ = *ptr; }
//fix 2: unsafe { drop_in_place(ptr); }

buf is not owned by anyone

Abstraction of Bug Patterns

26

Var 1 Heap Object

Var 2 Heap Object

create aliases
consume the ownership

Var 2
Heap Object

more aliases

Var 3

At least one variable should be properly dropped
Otherwise, positive (leakage detected)

resource token

ownership

Practical Cases are More Complicated

27

❖Field-sensitivity issues

❖Correctness of Drop trait implementation

pub struct WString { ptr: NonNull<WStr>, capacity: usize, }
impl WString {

unsafe fn steal_buf(&mut self)
-> ManuallyDrop<Units<Vec<u8>, Vec<u16>>> { ... }

}
impl Drop for WString {

fn drop(&mut self) {
let _ = unsafe { self.steal_buf() };
unsafe {

let mut buf = self.steal_buf();
ManuallyDrop::drop(&mut buf);

};
}

}

-

+

+

steal_buf() returns a ManuallyDrop object

https://github.com/ruffle-rs/ruffle/pull/6528

Overall Idea: Model Checking

28

❖Type encoding: abstract data types wrt heap resource holding

❖Constraint extraction: path-insensitive data-flow analysis

➢fast, less false positives

❖Constraint solving: based on Z3

1. Type Encoding
2. Constraint

Extraction
3. Constraint Solving

Approach

29

❖Encode each type as a one-level bit vector (field-sensitive)

❖Also encode the corresponding drop function as a one-level bit vector

1. Type Encoding
2. Constraint

Extraction
3. Constraint Solving

Drop: [0,0]

Approach

30

1. Type Encoding
2. Constraint

Extraction
3. Constraint Solving

Example

31

Encoded the destructor as [1] since it does not drop ptr

Experimental Results

32

❖Can detect all issues of a dataset collected from GitHub

❖A small number of false positives

Large-Scale Experiments

33

❖Scan 1.2k real-world Rust crates in 96 minutes (8.4s per crate)

❖Find 19 crates with potential leak issues

4. Heap Exhaustion Handling

OOM-Guard: Towards improving the ergonomics of Rust OOM handling via a
reservation-based approach, FSE, 2023.

34

Problem of Out-Of-Memory

35

❖Rust adopts an infallible mode:

➢No way for developers to handle OOM

➢Terminate the process if OOM

❖Problem: many APIs involve heap allocations underneath

https://doc.rust-lang.org/std/primitive.slice.html#method.sort

API - F1

F2 F3

F4
F5

malloc()

Sample Call Graph

Fallible Mode in Nightly Rust

36

❖Enable developers to handle allocation failures

❖Require much programming efforts

API - F1

F2 F3

F4
F5

malloc()

Infallible mode

API-F1

F2 F3

F4
F5

try_malloc()

Fallible mode

error propagation

try_malloc(...) -> Result<...>

https://rust-lang.github.io/rfcs/2116-alloc-me-maybe.html

Overall Idea: A Convenient Way to Handle OOM

37

❖Reserve a large enough heap space by the top-level API

❖Subsequent allocations reusing the space would not fail

fn F1(...) -> Result<...>{
 // reservation stmts

let r2 = F2(...);
 let r3 = F3(...);
 ...
}

API-F1

F2 F3

F4
F5

malloc()

❖How to automate the process?

➢Compute the memory size needed for reservation

➢Insert the reservation statements at the function entry

➢Hook subsequent allocations to use the reserved memory

Framework of Our Solution

38

Annotation

Source Code
with

OOM-Guard Macro

Developer

Macro
Expansion New Code

with
Mem Reservation

Mem Cost
Analysis

Executable
with

Mem Reservation

Compilation

System Allocator

Proxy Allocator

fn A(x:i8){ B(); C(x);}

fn C(y:i8){
 let z = match y {
 0 => 8,
 _ => y,
 };

E(z); F();
}

fn E(n:i8){__rust_alloc(n + 8);}

A

B C

E FD

E is function with allocation sites

Cost Expression of Function A:
Phi(x, 8) + 8

Cost Expression of Function E:
n + 8

Cost Expression of Function C:
Phi(y, 8) + 8

replace n with Phi(y, 8)

replace y with x

Memory Cost Analysis

❖Cases that cannot be analyzed: need more annotations

➢Implicit loop bound: bound annotation

➢Loop variant allocation size: sub-level reservation

➢Dynamic dispatch/function pointers: sub-level reservation

When A is called, reserve max (x, 8) + 8

39

Demonstration of Usage

40

Experiments: Effectiveness

41

❖Target Rust projects:

➢rCore: an operating system

➢Bento-fs: a file system

❖Effectiveness: less code needed (1/5), no crash of OOM

Experimental Results: Efficiency

42

Memory cost analysis overhead

Peak memory usage
comparison

Execution time

5. Summary

43

Summary and Takeaways

44

❖ Limitation of Rust ownership:

➢ Ineffective for unsafe code

➢ Ignores memory leakage

❖Our approaches to detect heap bugs:

➢Dangling pointer: path-sensitive

➢Memory leakage: model checking

❖Rust lacks convenient heap exhaustion handling: infallible/fallible

❖Our reservation-based approach (hybrid mode) with better ergonomics

THANK YOU
xuh@fudan.edu.cn

45

	幻灯片 1
	幻灯片 2: Outline
	幻灯片 3: 1. Research Background
	幻灯片 4: Most Dangerous Software Vulnerabilities (by MITRE, 2023)
	幻灯片 5: Why Heap Bugs are Dangerous? UAF as an Example
	幻灯片 6: Detecting UAF is Hard: via Allocator Design
	幻灯片 7: Detecting UAF is Hard: via Static Analysis
	幻灯片 8: Auto Heap Management: Rust Tackles the Problem via Ownership
	幻灯片 9: Why the Approach is Efficient?
	幻灯片 10: Limitations of Ownership
	幻灯片 11: Empirical Study of Memory-Safety Bugs in Rust Projects
	幻灯片 12: Our Research Efforts: Fight the Heap War with Rust
	幻灯片 13: 2. Dangling Pointer Detection
	幻灯片 14: Motivating Example: Dangling Pointer
	幻灯片 15: Bug Analysis with Rust MIR
	幻灯片 16: Abstraction of Bug Patterns
	幻灯片 17: Approach for Dangling Pointer Bug Detection
	幻灯片 18: Approach:
	幻灯片 19: Approach:
	幻灯片 20: Approach:
	幻灯片 21: Approach:
	幻灯片 22: Experimental Results
	幻灯片 23: Experimental Results: Efficiency
	幻灯片 24: 3. Memory Leakage Detection
	幻灯片 25: Memory Leakage Problem
	幻灯片 26: Abstraction of Bug Patterns
	幻灯片 27: Practical Cases are More Complicated
	幻灯片 28: Overall Idea: Model Checking
	幻灯片 29: Approach
	幻灯片 30: Approach
	幻灯片 31: Example
	幻灯片 32: Experimental Results
	幻灯片 33: Large-Scale Experiments
	幻灯片 34: 4. Heap Exhaustion Handling
	幻灯片 35: Problem of Out-Of-Memory
	幻灯片 36: Fallible Mode in Nightly Rust
	幻灯片 37: Overall Idea: A Convenient Way to Handle OOM
	幻灯片 38: Framework of Our Solution
	幻灯片 39: Memory Cost Analysis
	幻灯片 40: Demonstration of Usage
	幻灯片 41: Experiments: Effectiveness
	幻灯片 42: Experimental Results: Efficiency
	幻灯片 43: 5. Summary
	幻灯片 44: Summary and Takeaways
	幻灯片 45: THANK YOU

