
徐辉

复旦大学计算机科学技术学院

Demystifying and Enhancing Rust Security:
A Privilege-Code Perspective

9/17/2023
1

Rust安全机制和特权代码安全强化

Outline

2

I. Demystifying the Security Mechanism of Rust

II. Unsafe Code Characterization and Usage Mitigation

III. Detecting Bugs Incurred by Privileged Code

1) Trends of Software Security via Language Design

1) Trends of Software Security via Language Design

2) Security Mechanisms of Rust: Philosophy and Implementation

3) An Empirical Study of the Rust Ecosystem

3

I. Demystifying the Security Mechanism of Rust

Most Dangerous Software Vulnerabilities (by MITRE, 2023)

4

Rank ID Name
1 CWE-787 Out-of-bounds Write
2 CWE-79 Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting')
3 CWE-89 Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection')
4 CWE-416 Use After Free
5 CWE-78 Improper Neutralization of Special Elements used in an OS Command ('OS Command Injection')
6 CWE-20 Improper Input Validation
7 CWE-125 Out-of-bounds Read
8 CWE-22 Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal')
9 CWE-352 Cross-Site Request Forgery (CSRF)

10 CWE-434 Unrestricted Upload of File with Dangerous Type
11 CWE-862 Missing Authorization
12 CWE-476 NULL Pointer Dereference
13 CWE-287 Improper Authentication
14 CWE-190 Integer Overflow or Wraparound
15 CWE-502 Deserialization of Untrusted Data
16 CWE-77 Improper Neutralization of Special Elements used in a Command ('Command Injection')
17 CWE-119 Improper Restriction of Operations within the Bounds of a Memory Buffer
18 CWE-798 Use of Hard-coded Credentials
19 CWE-918 Server-Side Request Forgery (SSRF)
20 CWE-306 Missing Authentication for Critical Function
21 CWE-362 Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')
22 CWE-269 Improper Privilege Management
23 CWE-94 Improper Control of Generation of Code ('Code Injection')
24 CWE-863 Incorrect Authorization
25 CWE-276 Incorrect Default Permissions
36 CWE-401 Missing Release of Memory after Effective Lifetime

Source: https://cwe.mitre.org/top25/archive/2023/2023_top25_list.html

Which vulnerabilities can be mitigated through language design?

Application independent ones, e.g., memory-safety bugs

Why Memory Bugs are Dangerous? UAF as an Example

5

1. free(p1) bin forward ptr forward ptr
headerheader

...

p1

arbitrary addrbin forward ptr
headerp1

2. write(p1)

3. p2 = malloc() bin arbitrary addr

4. p3 = malloc() p3 arbitrary addr

Add the block of *p1 to the free list

Remove the block from the list; now bin points to the arbitrary address

p3 points to the arbitrary address

Attackers modify the forward pointer through p1

Detecting UAF is Hard: via Allocator Design

6

❖Option 1: prevent writing the dangling pointer p1

arbitrary addrbin forward ptr
headerp1

2. write(p1)

Problem: incur overhead during each pointer access

❖Option 2: prevent adding invalid blocks to the free list

How to design an efficient and robust mechanism?

3. p2 = malloc() bin arbitrary addr

Detecting UAF is Hard: via Static Analysis

7

❖Alias analysis is NP-Hard

➢Hamiltonian path problems => Flow-insensitive may-alias analysis

➢More complicated alias analysis problems：
 Flow-sensitive, path-sensitive, control-sensitive, context-sensitive…

 Raw pointer, point-to

 Concurrent code

[Horwitz'97] Susan Horwitz, Precise Flow-Insensitive May-Alias Analysis is NP-Hard, 1997

v4 = &v5
v2 = &v4
v3 = &v4
v2 = &v3
v1 = &v2

May-Alias Analysis

2 3

4 5

1

Hamiltonian Path Problem

****v1 = v5 ?

(Security) Features of System PL: Rust/C++/Go/Zig

8

Rust ZigGo

Error Handling
(Monad)

Unsafe

Heap
Management

Raw Pointer

GC

Unsafe

Ownership

Intelligent Pointer

Subtype
Constraint

More

Allocator over Std

Compile-time Exe

Trait Bound

Option/Result

Concurrency Send/Sync Goroutines

Type Constraint

errWriter Option Type

Lifetime Bound

NonNull

Intelligent Pointer

C++20

Concept

Optional

Contract

Std Lib

This features listed may not be complete

2) Security Mechanisms of Rust: Philosophy and Impl.

1) Trends of Software Security via Language Design

2) Security Mechanisms of Rust: Philosophy and Implementation

3) An Empirical Study of the Rust Ecosystem

9

I. Demystifying the Security Mechanism of Rust

Idea of Rust for Security

10

Operating System:
Ring Model Kernel

User Space

Resource Management

System Call

Less Privileged

May break the security protocol

Security objective of Rust:

• Type safety (nothing special)

• No heap bugs (auto)

• No other undefined behaviors

Unsafe
Code

Safe Code
Rust:
Code Privilege Model?

Less Privileged

Interior unsafe: encapsulate
privileged code within safe APIs

Auto Heap Management: Rust Tackles the Problem via Ownership

11

❖Each object is owned by one variable

❖Ownership can be moved or borrowed

➢Mode of borrowing: immutable/mutable

let mut alice = Box::new(1);
let bob = alice;
println!("alice:{}", alice);

let mut alice = Box::new(1);
let bob = &mut alice;
**bob = **bob + 1;
println!("alice:{}", alice);

alice owns the Box object

move the ownership from alice to bob

bob borrows the ownership

bob is dead; return the ownership

❖Exclusive mutability principle: an object cannot be mutable and

shared at one program point. How?

Lifetime Inference with a Constraint-based Method

❖Infer the minimum lifetime of each reference

➢not based on lexical scopes or blocks

https://rust-lang.github.io/rfcs/2094-nll.html

let mut a: i32 = 1;
let mut b: i32 = 2;
let mut p: & T = &a;
// program point 1
if condition {
 // program point 2
 print(*p);
 // program point 3
 p = &b;
 // program point 4
}
// program point 5
print(*p);
// program point 6

p is alive.

p is alive.

p is dead, return the ownership to a

p is reassigned, alive

p is alive

p is dead

12

Constraint Extraction: Liveness

❖Forward def-use analysis

❖(L: {P}) @ P denotes lifetime L is alive at the point P

❖Traditional liveness analysis: backward data-flow analysis

Def: ('pa: {BB1/3}) @ BB1/3

Use: ('pa: {BB2/0}) @ BB2/0

Def: ('pb: {BB2/2}) @ BB2/2

Use: (phi('pa,'pb): {BB3/0}) @ BB3/0

let mut a: i32 = 1;
let mut b: i32 = 2;
let mut p: & T = &a;
if condition

print(*p);
p = &b;

print(*p);

BB1

BB2

BB3

'pa = {BB1/3, BB2/0, BB3/0}
'pb = {BB2/2, BB3/0}

13

Constraint Extraction: Subtyping

❖The lifetime of each reference should not exceed its referent

❖(L1: L2) @ P means lifetime L1 outlives lifetime L2 at point P

('a: 'pa) @ BB1/3
Def: ('pa: {BB1/3}) @ BB1/3

Use: ('pa: {BB2/0}) @ BB2/0
('b: 'pb) @ BB2/2
Def: ('pb: {BB2/2}) @ BB2/2

Use: (phi('pa,'pb): {BB3/0}) @ BB3/0

let mut a: i32 = 1;
let mut b: i32 = 2;
let mut p: & T = &a;
if condition

print(*p);
p = &b;

print(*p);

BB1

BB2

BB3

'pa = {BB1/3, BB2/0, BB3/0}
'a = {BB1/1, BB1/2, BB1/3, BB2/0, BB3/0}
'pb = {BB2/2, BB3/0}
'b = {BB1/2, BB1/3, BB2/0, BB2/1, BB2/2, BB3/0}

14

Detecting Shared Mutable Aliases

let mut a: i32 = 1;
let mut b: i32 = 2;
let mut p: & T = &a;
if condition

a = 2;
print(*p);
p = &b;

print(*p);

BB1

BB2

BB3

Liveness

{a}

{a,b}

{a,b,pa}

{a,b,pa}

{b}
{b,pb}

{a,b,pa}

{a,b,pa,pb}

Alias Set

{a: p(r)} {b: ∅}

Conflict!!!

15

Why the Approach is Efficient?

16

❖Avoid hard alias-analysis problems

➢No need to track multi-level aliases

➢The mutability does not propagate

let mut a = 1;
let mut p1 = &a;
let p2 = &a;
let mut q1 = &mut p1;
let q2 = &p2;

p2

p1

a

q1

q2

mutable variable

immutable variable

mutable borrow

immutable borrow

p1 is mutable; immutable borrow; *p1 is read only

q1 is mutable; mutable borrow; **q1 is read only

Limitations of Ownership

❖We may need both shared & mutable, e.g., double-linked list

next
prev

next
prev

next
prev

struct Node {
 val: u64,
 prev: Option<Rc<RefCell<List>>>,
 next: Option<Rc<RefCell<List>>>,
}

Option 1: Shared Pointer
(with runtime cost)

struct Node {
 val: u64,
 next: *mut List,
 prev: *mut List,
}

Option 2: Raw Pointer
(unsafe code, bypass borrow check)

❖Ownership also requires RAII because dropping unit data is bad

➢Use unsafe code to create uninitialized object

17

Interior Unsafe

18

❖Encapsulate unsafe code within safe APIs

❖Prevent developers from directly using unsafe code

impl<T> Vec<T> {
 //safe API encapsulation
 pub fn push(&mut self, value: T) {
 if self.len == self.buf.capacity() {
 self.buf.reserve_for_push(self.len);
 }

unsafe {
 let end = self.as_mut_ptr().add(self.len);

ptr::write(end, value);
 self.len += 1;

}
 }
}

Code of Vec from Rust std-lib

Project Code

Library Code

safe API
unsafe

safe API
unsafe

call

Limitation: Security vs Control + Productivity

19

❖Control: need privileged code to implement particular features

➢e.g., low-level code, double-linked list, concurrent code

➢API soundness with interior unsafe code cannot be verified by compiler

❖Productivity: advanced language features

➢Generic, trait: increase the difficult of verification

Project Code

Library Code

safe API
unsafe

call

safe API
unsafe

unsafe

unsafe

impl<T> Vec<T:Bound?> {
 pub fn push(&mut self,
 value: T) {
 ...
 }
}

Real Case Generic Parameters with Trait Bound

Project Code

Library Code

safe API
unsafe

safe API
unsafe

call

Ideal Case

3) An Empirical Study of the Rust Ecosystem

1) Trends of Software Security via Language Design

2) Security Mechanisms of Rust: Philosophy and Implementation

3) An Empirical Study of the Rust Ecosystem

20

I. Demystifying the Security Mechanism of Rust

[Xu'21] Hui Xu, et al. “Memory-safety challenge considered solved? An in-depth study
with all Rust CVEs”, TOSEM, 2021.

Overview

❖A survey of 185 memory-safety bugs before 2020-12-31

Std Lib

3rd-party Libs

Executables

Compiler

119 CVEs + 12 (Advisory-DB) + 4 (Trophy Case) + 7 (GitHub)

0 CVEs + 1 (Advisory-DB)

3 CVEs + 2 (Advisory-DB) + 28 (GitHub)

0 CVEs + 10 (GitHub)

PoC
#![forbid(unsafe_code)]

Libraries
unsafe code

call safe (unsound) APIs

Unsound

Mem-Safety
Problem

Executable

Libraries

escalation of unsoundness
Developer

User

submit

release

Unsound

Bug
Report

❖All these bugs need unsafe code, except one compiler bug

❖Most CVEs are API soundness issues

21

Some Bugs are Unique for Rust

❖35 bugs are automatic memory reclaim issues

❖81 bugs are unsoundness issues of APIs

➢29/81 simple issues

➢52/81 related to generics and traits

22

Case 1: Auto Memory Reclaim

❖Drop an object automatically if no variable owns it.

PoC of CVE-2019-16140, CVE-2019-16144

fn genvec()->Vec<u8>{
 let mut s = String::from("a tmp string");
 //let mut s = ManuallyDrop::new(String::from("a tmp string"));
 let ptr = s.as_mut_ptr();

unsafe{
 let v = Vec::from_raw_parts(ptr,s.len(),s.len());
 //panic!();
 //mem::forget(s);
 v

}
}
fn main(){
 let v = genvec(); //v is dangling
 assert_eq!('a' as u8, v[0]);
}

create a temporary string s

create a Vec v pointing to s via unsafe

return v

drop s; v becomes dangling

accessing v causes use-after-free

23
Test the code with Miri: https://play.rust-lang.org

Case 2: Unsound API

❖A safe API may lead to undefined behaviors

PoC of CVE-2021-45709

use std::slice;
fn foo (a: &mut [u8]){
 // require 4-byte alignment
 let p = a.as_mut_ptr() as *mut u32;

unsafe {
 let s = slice::from_raw_parts_mut(p, 1);
 let _x = p[0];

}
}

fn main(){
 let mut x = [0u8;10];
 foo(&mut x[1..9]);
}

24

accept a parameter of u8 slice

obtain the raw pointer as *u32

obtain a new slice of u32

out-of-bound read!!!

Case 3: Vulnerable Generic Parameters

25

❖Generic parameters vulnerable to particular types

➢Existing types

➢Newly customized types, e.g., CVE-2020-25796, CVE-2020-35903

use std::slice;
fn foo<T>(a: &mut [T]){
 // require 4-byte alignment
 let p = a.as_mut_ptr() as *mut u32;

unsafe {
 let s = slice::from_raw_parts_mut(p, 1);
 let _x = p[0];

}
}

fn main(){
 let mut x = [0u8;10];
 foo(&mut x[1..9]);
}

accept a parameter of u8 slice

monomorphize T with a u8 slice

PoC of advanced CVE-2021-45709

Case 4: Vulnerable Generic Parameters: Insufficient Trait Bound

use std::rc::Rc;
#[derive(Clone)]
struct MyStruct<T> {t:T}
unsafe impl<T> Send for MyStruct<T>{}
//unsafe impl<T:Send> Send for MyStruct<T>{}

fn main(){
 let mut s = MyStruct{t:Rc::new(String::from("data."))};
 for i in 0..999{
 let mut c = s.clone();
 std::thread::spawn(move ||{
 if !Rc::get_mut(&mut c.t).is_none(){
 (*Rc::get_mut(&mut c.t).unwrap()).clear();
 }
 println!("c.t = {:?}", c.t);
 });
 }
}

PoC of CVE-2020-35870, CVE-2020-35871, and CVE-2020-35886

impl Send Trait for MyStruct

define a generic struct MyStruct

monomorphize T of MyStruct
with Rc (thread-unsafe)

concurrency bug!!!

26

Fixed (improved) in latest Rust (after 1.63)

Case 5: Unsound Trait

❖Reimplement a safe function may lead to undefined behaviors.

trait MyTrait {
 fn type_id(&self) -> TypeId where Self: 'static {
 TypeId::of::<Self>()
 }
}
impl dyn MyTrait {
 pub fn is<T: MyTrait + 'static>(&self) -> bool {/*...*/}
 pub fn downcast<T: MyTrait + 'static>(self: Box<Self>)
 -> Result<Box<T>, Box<dyn MyTrait>> {/*...*/}
}
impl MyTrait for u128{}
impl MyTrait for u8{
 fn type_id(&self) -> TypeId where Self: 'static {
 TypeId::of::<u128>()
 }
}
fn main(){
 let s = Box::new(10u8);
 let r = MyTrait::downcast::<u128>(s);
}

return the type of the trait object

reimpl type_id() for u8 with errors

bug: out-of-bound access!!!

Simplified PoC of CVE-2019-12083
27

Our Interest: Towards More Secure Rust Crates

28

1) How to mitigate the usage of unsafe code?

2) How to verify the security of unsafe code?

✓ Detect bugs caused by unsafe code

✓ Soundness verification of interior unsafe API

Rice's Theorem

Soundness vs Completeness vs Efficiency

NP-hard Problem

4) Characteristics of Unsafe Code

4) Characteristics of Unsafe Code

5) Contracts of Using Unsafe Code

6) Replacement of Unsafe Code

29

II. Unsafe Code Characterization and Usage Mitigation

Privileged Unsafe Code

30

Application Scenarios
Five Types of Unsafe Code in Rustdoc

Raw Ptr Unsafe Fn Unsafe Trait Static Mut Union

Low-level control ✓ ✓

Interoperability ✓ ✓

Non-exclusive Mutability ✓ ✓

Delayed Initialization ✓ ✓

Transmute ✓

Unchecked Operations ✓ ✓

Tailored Allocator ✓

Concurrent Objects ✓

Global Objects ✓

Low-level Control: OS Dev as An Example

31

let vga_buffer = 0xb8000 as *mut u8;
unsafe{

*vga_buffer.offset(0) = byte;
*vga_buffer.offset(0 + 1) = colour;

}

unsafe {
asm!("in al, dx", out("al") value, in("dx") port

 , ...);
}

Case 2: I/O read/write via
inline assembly

Case 1: write to device via
raw pointer

pub unsafe trait GlobalAlloc {
 unsafe fn alloc(&self, layout: Layout) -> *mut u8;
}
unsafe impl GlobalAlloc for XXX {
 unsafe fn alloc(&self, _layout: Layout) -> *mut u8 {
 ...
 }
}

Case 3: memory allocation
is unsafe itself

https://os.phil-opp.com/minimal-rust-kernel/

Delayed Initialization: Uninitialized Memory

32

❖Create an uninitialized object is unsafe

➢The method mem::uninitialized() is deprecated

❖Use MaybeUninit: create an object of MaybeUninit is safe

➢Assume initialization done is unsafe

https://doc.rust-lang.org/std/mem/union.MaybeUninit.html

//Step1: create an object of MaybeUninit
let mut v:MaybeUninit<Vec<i32>> = MaybeUninit::uninit();

//Step2: code to initialize the vector
unsafe { v.as_mut_ptr().write(vec![1,2,3]); }

//Step3: initialization done; unwrap MaybeUninit
let v = unsafe { v.assume_init() };

Uninit Mem
Type: ManuallyDrop<T>

Initialized Mem
Type: ManuallyDrop<T>

Initialized Mem
Type: T

Initialize

Assume init

Unchecked Operations

33

❖Skip the validity (e.g., boundary) check

❖More efficient but insecure

let mut x = vec![1, 2, 3];
unsafe {
 let elem = x.get_unchecked_mut(100);
 *elem = 10;
}
unsafe {
 let (left, right) = v.split_at_unchecked(50);
}

https://doc.rust-lang.org/std/vec/struct.Vec.html

Concurrency Safety

34

❖Whether allow an object to be used in multiple threads

object

Thread 1 Thread 2

head

owner

move

object

Thread 1 Thread 2

head

mut ref ref

lock

struct MyType{ ... }
unsafe impl Send for MyType{}
unsafe impl Sync for MyType{}

Send: object can be passed among threads Sync: object ref can be passed among threads

5) Contracts of Using Unsafe Code

4) Characteristics of Unsafe Code

5) Contracts of Using Unsafe Code

6) Replacement of Unsafe Code

35

II. Unsafe Code Characterization and Usage Mitigation

[Cui'23a] Mohan Cui, et al. "Is unsafe an Achilles' Heel? A Comprehensive Study of
Safety Requirements in Unsafe Rust Programming." arXiv 2023.

Contract: Some Unsafe APIs Have Preconditions

❖Recall the bug of unsound APIs

fn foo<T>(a: &mut [T], l: usize){
 // require 4-byte alignment
 let p = a.as_mut_ptr() as *mut u32;
 unsafe {
 let s = slice::from_raw_parts_mut(p, l);
 }
 let _x = p[0];
}

fn main(){
 let mut x = [0u8;10];
 foo(&mut x[1..9], 1);
}

36

Rustdoc Provides Safety Requirements (Verbose)

https://doc.rust-lang.org/beta/core/slice/fn.from_raw_parts_mut.html
37

Summary of Preconditions

38

Contract: Some Unsafe APIs have Postconditions

PoC of CVE-2020-36205

#[derive(Debug)]
pub struct Error<T> {

pub ptr: *mut T
}

impl<T> Drop for Error<T> {
fn drop(&mut self) {

unsafe {
ptr::drop_in_place(self.ptr);

}
}

}

fn main(){
let x = Box::new(1u32);
let p = Box::into_raw(x);
let _ = Error { ptr:p };
...

}

The address should not be used after drop_in_place()

39

Summary of Postconditions

40

Verify Whether The Contracts Can Be Met?

41

❖Miri can detect undefined behaviors of by executing IR.

❖Limitation: based on dynamic analysis, need concrete test cases.

https://play.rust-lang.org

6) Replacement of Unsafe Code

4) Characteristics of Unsafe Code

5) Contracts of Using Unsafe Code

6) Replacement of Unsafe Code

42

II. Unsafe Code Characterization and Usage Mitigation

Motivating Example: Misused Unsafe Code

43 https://github.com/bottom-software-foundation/bottom-rs/pull/6/files

Detailed Issues

44

1) Substitutability: is it possible to replace the unsafe code?

2) How to replace: what is the corresponding safe version?

3) Cost of replacement: whether the replacement is worthy?

Rust Crate

(developer code)

Rust Standard Library

Unsafe API Safe API

call
replace

call

Rust Crate

(developer code)

Rust Standard Library

Unsafe API

call

refactor

Unsafe API Safe API

Code

call replace call

call

Case 1: function level
(code replacement)

Case 2: crate level
(code refactoring)

our current focus

Substitutability of Unsafe Code

45

Application
Scenarios

Five Types of Unsafe Code in Rustdoc Substitutability

Raw
Ptr

Unsafe
Fn

Unsafe
Trait

Static
Mut

Union Replaceable? How?

Low-level control ✓ ✓ no

Interoperability ✓ ✓ no

Non-exclusive
Mutability

✓ ✓ may intelli ptr

Delayed
Initialization

✓ ✓ may init twice

Transmute ✓ may safe cast

Unchecked
Operations

✓ ✓ yes checked

Tailored Allocator ✓ no

Concurrent Objects ✓ no

Global Objects ✓ yes lock

Example: Replacement of Unchecked

46

let mut x = vec![1, 2, 3];
unsafe {
 let elem = x.get_unchecked_mut(100);
 *elem = 10;
}
unsafe {
 let (left, right) = v.split_at_unchecked(50);
}

let mut x = vec![1, 2, 3];
unsafe {
 let elem = x.get_mut(100);
 *elem = 10;
}
unsafe {
 let (left, right) = v.split_at(50);
}

Always possible, with runtime cost

Example: Replacement of Uninitialized Memory

47

//Step1: Create an initliazed object
let mut v:Vec<i32> = vec![0;3]; //not always possible
//Step2: Reinitialize the object
let mut i:i32 = 0;
for it in v.iter_mut() {
 *it = {i+=1;i};
}

//Step1: create an object of MaybeUninit
let mut v:MaybeUninit<Vec<i32>> = MaybeUninit::uninit();

//Step2: code to initialize the vector
unsafe { v.as_mut_ptr().write(vec![1,2,3]); }

//Step3: initialization done; unwrap MaybeUninit
let v = unsafe { v.assume_init() };

Not always possible, with runtime cost

Example: Replacement of Transmute

48

❖Let developers decide whether to replace

fn rs_template_state_new() -> *mut std::os::raw::c_void {
 let state = TemplateState::new();
 let boxed = Box::new(state);

return unsafe { transmute(boxed) };
return Box::into_raw(boxed) as *mut c_void;

}

-
+

Case of misuse: replacement has no cost

let store = [0, 1, 2, 3];
let v = store.iter().collect::<Vec<&i32>>();
let v = unsafe { mem::transmute::<Vec<&i32>, Vec<Option<&i32>>>(v) };
let v = v.into_iter().map(Some).collect::<Vec<Option<&i32>>>();

-
+

Replacement has cost

7) Detecting Dangling Pointer Bugs

7) Detecting Dangling Pointer Bugs

8) Detecting Memory Leakage Bugs

49

III. Detecting Bugs Incurred by Privileged Code

[Cui&Chen'22] Mohan Cui, Chengchun Chen, et al. "SafeDrop: Detecting memory
deallocation bugs of Rust programs via static data-flow analysis", TOSEM, 2022.

Recall the Auto Memory Reclaim Bug

50

fn genvec()->Vec<u8>{
 let mut s = String::from("a tmp string");
 //let mut s = ManuallyDrop::new(String::from("a tmp string"));
 let ptr = s.as_mut_ptr();
 unsafe{
 let v = Vec::from_raw_parts(ptr,s.len(),s.len());
 //panic!();
 //mem::forget(s);
 v
 }
}
fn main(){
 let v = genvec(); //v is dangling
 assert_eq!('a' as u8, v[0]);
}

create a temporary string s

create a Vec v pointing to s via unsafe

return v

drop s; v becomes dangling

accessing v causes use-after-free

Bug Analysis with Rust MIR

51

_1 = const <std::string::String as std::convert::From<&str>>
 ::from(const "a tmp string") -> bb2;

bb0:

_5 = &mut _1;
_4 = const <std::string::String as std::ops::DerefMut>::deref_mut(move _5)
-> [return: bb3, unwind: bb4];

resume;

bb2:

bb1:

_3 = &mut (*_4);
_2 = const core::str::<impl str>::as_mut_ptr(move _3)
-> [return: bb5, unwind: bb4];

bb3:

drop(_1)
-> bb1;

bb4:

_6 = _2;
_8 = &_1;
_7 = const std::string::String::len(move _8) -> [return: bb6, unwind: bb4];

bb5:

_10 = &_1;
_9 = const std::string::String::len(move _10) -> [return: bb7, unwind: bb4];

bb6:

return;

_0 = const std::vec::Vec::<u8>::from_raw_parts(move _6, move _7, move _9)
-> [return: bb8, unwind: bb4];

bb7:

drop(_1) -> bb9;//calling mem::forget(s) can remove this drop instruction.

bb9:

bb8:

Real-world programs could have more code here, and it may panic the program.

Bad drop of normal
execution

Bad drop of
exception
handling

drop(_0)

Abstraction of Bug Patterns

52

Var 1 Heap Object

create aliases

Var 1

Heap ObjectVar 2

• No aliases should be used or dropped
• Otherwise, positive (bug detected)

Var 3

Heap Object
Var 2

Var 3

drop(var1)

ownership

• No aliases should be dropped
• Otherwise, positive

Var 1 Uninit Object

create aliases

Heap Object
Var 1

Var 2

Initialization done

Uninit Object
Var 1

Var 2

Approach for Detecting Dangling Pointer Bugs

53

❖Requirements:

➢Effective: use-after-free, double free, drop unint memory

➢Precise: should not incur much false positives

➢Efficient: fast

❖Approach: path-sensitive analysis

1. Path Extraction 2. Alias Analysis 3. Pattern Detection

Approach:

54

❖Extract the spanning tree of each function:

➢Compute strongly-connected components with Tarjan Algorithm

➢Compute the may alias sets of each SCC

❖Refine the tree based on rules to handle conner cases

1. Path Extraction 2. Alias Analysis 3. Pattern Detection

Control-flow Graph Spanning Tree

Approach:

55

❖Classic accurate rules for point-to analysis are inefficient

➢Anderson-style

Pattern MIR Abstraction

Move a = move b 𝑆𝑎 = 𝑆𝑎 − 𝑎,
𝑆𝑏 = 𝑆𝑏 ∪ 𝑎

Copy a = b 𝑆𝑎 = 𝑆𝑎 − 𝑎,
𝑆𝑏 = 𝑆𝑏 ∪ 𝑎

Ref a = &b 𝑆𝑎 = 𝑆𝑎 − 𝑎,
𝑆𝑙𝑜𝑐(𝑏) = 𝑆𝑙𝑜𝑐(𝑏) ∪ 𝑎

Deref a = *b 𝑆𝑎 = 𝑆𝑎 − 𝑎,
∀𝑣 ∈ 𝑝𝑡𝑠(𝑏), 𝑆𝑣 = 𝑆𝑣 ∪ 𝑎

Fn(Mov) a = func(mov b) 𝑈𝑝𝑑𝑎𝑡𝑒(𝑆𝑎 , 𝑆𝑏)

Fn(Copy) a = func(b) 𝑈𝑝𝑑𝑎𝑡𝑒(𝑆𝑎 , 𝑆𝑏)

point-to

a

c b

a=&c

b=*ac=&d

d.1

d.0d
d.0=&e

e

alias set: {b, c}

1. Path Extraction 2. Alias Analysis 3. Pattern Detection

Approach:

56

❖Our approximation rules:

➢Similar to Steensgaard, but ignore multi-level pointers

1. Path Extraction 2. Alias Analysis 3. Pattern Detection

❖Example:

Approach:

57

❖Field-sensitive and inter-procedural analysis

1. Path Extraction 2. Alias Analysis 3. Pattern Detection

inter-procedural

field-sensitive

update

{0.0.0, 1}

Approach:

58

1. Path extraction 2. Alias Analysis 3. Pattern Detection

Var 1 Heap Object

create aliases

Var 1

Heap ObjectVar 2

• No aliases should be used or dropped
• Otherwise, positive

Var 3

Heap Object
Var 2

Var 3

drop(var1)

Var 1 Uninit Object

create aliases

Heap Object
Var 1

Var 2

Initialization done

• No aliases should be dropped
• Otherwise, positive

Uninit Object
Var 1

Var 2

Experimental Results

59

❖Can detect all related CVEs with a low false positive rate

❖ False positive: compiler intrinsic trait implementations are unavailable

➢Assume aliases among the arguments and return value

Experimental Results: Efficiency

60

❖Very small overhead compared to the original compilation

8) Detecting Memory Leakage Bugs

7) Detecting Dangling Pointer Bugs

8) Detecting Memory Leakage Bugs

61

III. Detecting Bugs Incurred by Privileged Code

[Cui'23b] Mohan Cui, et al. "rCanary: Detecting memory leaks across semi-
automated memory management boundary in Rust", arXiv, 2023.

+

Memory Leakage Problem

62

❖Consuming an ownership (leak) is safe in Rust

❖Taking an ownership or manual deallocation is unsafe

+

let mut buf = Box::new("buffer");
let ptr = Box::into_raw(buf); //consume the ownership
//fix 1: unsafe { let _ = *ptr; }
//fix 2: unsafe { drop_in_place(ptr); }

buf is not owned by anyone

Abstraction of Bug Patterns

63

Var 1 Heap Object

Var 2 Heap Object

create aliases
consume the ownership

Var 2
Heap Object

more aliases

Var 3

At least one variable should be properly dropped
Otherwise, positive (leakage detected)

resource token

ownership

Practical Cases are More Complicated

64

❖Field-sensitivity issues

❖Correctness of Drop trait implementation

pub struct WString { ptr: NonNull<WStr>, capacity: usize, }
impl WString {

unsafe fn steal_buf(&mut self)
-> ManuallyDrop<Units<Vec<u8>, Vec<u16>>> { ... }

}
impl Drop for WString {

fn drop(&mut self) {
let _ = unsafe { self.steal_buf() };
unsafe {

let mut buf = self.steal_buf();
ManuallyDrop::drop(&mut buf);

};
}

}

-

+

+

steal_buf() returns a ManuallyDrop object

https://github.com/ruffle-rs/ruffle/pull/6528

Overall Idea: Model Checking

65

❖Type encoding: abstract data types wrt heap resource holding

❖Constraint extraction: path-insensitive data-flow analysis

➢fast, less false positives

❖Constraint solving: based on Z3

1. Type Encoding
2. Constraint

Extraction
3. Constraint Solving

Approach

66

❖Encode each type as a one-level bit vector (field-sensitive)

❖Also encode the corresponding drop function as a one-level bit vector

1. Type Encoding
2. Constraint

Extraction
3. Constraint Solving

Drop: [0,0]

Approach

67

1. Type Encoding
2. Constraint

Extraction
3. Constraint Solving

Example

68

Encoded the destructor as [1] since it does not drop ptr

Experimental Results

69

❖Can detect all issues of a dataset collected from GitHub

❖A small number of false positives

Large-Scale Experiments

70

❖Scan 1.2k real-world Rust crates in 96 minutes (8.4s per crate)

❖Find 19 crates with potential leak issues

Q & A

71

Thanks

	幻灯片 1: Demystifying and Enhancing Rust Security: A Privilege-Code Perspective
	幻灯片 2: Outline
	幻灯片 3: 1) Trends of Software Security via Language Design
	幻灯片 4: Most Dangerous Software Vulnerabilities (by MITRE, 2023)
	幻灯片 5: Why Memory Bugs are Dangerous? UAF as an Example
	幻灯片 6: Detecting UAF is Hard: via Allocator Design
	幻灯片 7: Detecting UAF is Hard: via Static Analysis
	幻灯片 8: (Security) Features of System PL: Rust/C++/Go/Zig
	幻灯片 9: 2) Security Mechanisms of Rust: Philosophy and Impl.
	幻灯片 10: Idea of Rust for Security
	幻灯片 11: Auto Heap Management: Rust Tackles the Problem via Ownership
	幻灯片 12: Lifetime Inference with a Constraint-based Method
	幻灯片 13: Constraint Extraction: Liveness
	幻灯片 14: Constraint Extraction: Subtyping
	幻灯片 15: Detecting Shared Mutable Aliases
	幻灯片 16: Why the Approach is Efficient?
	幻灯片 17: Limitations of Ownership
	幻灯片 18: Interior Unsafe
	幻灯片 19: Limitation: Security vs Control + Productivity
	幻灯片 20: 3) An Empirical Study of the Rust Ecosystem
	幻灯片 21: Overview
	幻灯片 22: Some Bugs are Unique for Rust
	幻灯片 23: Case 1: Auto Memory Reclaim
	幻灯片 24: Case 2: Unsound API
	幻灯片 25: Case 3: Vulnerable Generic Parameters
	幻灯片 26: Case 4: Vulnerable Generic Parameters: Insufficient Trait Bound
	幻灯片 27: Case 5: Unsound Trait
	幻灯片 28: Our Interest: Towards More Secure Rust Crates
	幻灯片 29: 4) Characteristics of Unsafe Code
	幻灯片 30: Privileged Unsafe Code
	幻灯片 31: Low-level Control: OS Dev as An Example
	幻灯片 32: Delayed Initialization: Uninitialized Memory
	幻灯片 33: Unchecked Operations
	幻灯片 34: Concurrency Safety
	幻灯片 35: 5) Contracts of Using Unsafe Code
	幻灯片 36: Contract: Some Unsafe APIs Have Preconditions
	幻灯片 37: Rustdoc Provides Safety Requirements (Verbose)
	幻灯片 38: Summary of Preconditions
	幻灯片 39: Contract: Some Unsafe APIs have Postconditions
	幻灯片 40: Summary of Postconditions
	幻灯片 41: Verify Whether The Contracts Can Be Met?
	幻灯片 42: 6) Replacement of Unsafe Code
	幻灯片 43: Motivating Example: Misused Unsafe Code
	幻灯片 44: Detailed Issues
	幻灯片 45: Substitutability of Unsafe Code
	幻灯片 46: Example: Replacement of Unchecked
	幻灯片 47: Example: Replacement of Uninitialized Memory
	幻灯片 48: Example: Replacement of Transmute
	幻灯片 49: 7) Detecting Dangling Pointer Bugs
	幻灯片 50: Recall the Auto Memory Reclaim Bug
	幻灯片 51: Bug Analysis with Rust MIR
	幻灯片 52: Abstraction of Bug Patterns
	幻灯片 53: Approach for Detecting Dangling Pointer Bugs
	幻灯片 54: Approach:
	幻灯片 55: Approach:
	幻灯片 56: Approach:
	幻灯片 57: Approach:
	幻灯片 58: Approach:
	幻灯片 59: Experimental Results
	幻灯片 60: Experimental Results: Efficiency
	幻灯片 61: 8) Detecting Memory Leakage Bugs
	幻灯片 62: Memory Leakage Problem
	幻灯片 63: Abstraction of Bug Patterns
	幻灯片 64: Practical Cases are More Complicated
	幻灯片 65: Overall Idea: Model Checking
	幻灯片 66: Approach
	幻灯片 67: Approach
	幻灯片 68: Example
	幻灯片 69: Experimental Results
	幻灯片 70: Large-Scale Experiments
	幻灯片 71: Thanks

