
Hui Xu
School of Computer Science

Fudan University

Fighting The Heap War with Rust

8/18/23
1

2

Outline

3

i. Research Background

ii. Dangling Pointer Detection

iii. Memory Leakage Detection

iv. Heap Exhaustion Handling

v. Summary

1. Research Background

Rust Ownership and Limitations

4

Most Dangerous Software Vulnerabilities (by MITRE)

5

Rank ID Name
1 CWE-787 Out-of-bounds Write
2 CWE-79 Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting')
3 CWE-89 Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection')
4 CWE-416 Use After Free
5 CWE-78 Improper Neutralization of Special Elements used in an OS Command ('OS Command Injection')
6 CWE-20 Improper Input Validation
7 CWE-125 Out-of-bounds Read
8 CWE-22 Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal')
9 CWE-352 Cross-Site Request Forgery (CSRF)
10 CWE-434 Unrestricted Upload of File with Dangerous Type
11 CWE-862 Missing Authorization
12 CWE-476 NULL Pointer Dereference
13 CWE-287 Improper Authentication
14 CWE-190 Integer Overflow or Wraparound
15 CWE-502 Deserialization of Untrusted Data
16 CWE-77 Improper Neutralization of Special Elements used in a Command ('Command Injection')
17 CWE-119 Improper Restriction of Operations within the Bounds of a Memory Buffer
18 CWE-798 Use of Hard-coded Credentials
19 CWE-918 Server-Side Request Forgery (SSRF)
20 CWE-306 Missing Authentication for Critical Function
21 CWE-362 Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')
22 CWE-269 Improper Privilege Management
23 CWE-94 Improper Control of Generation of Code ('Code Injection')
24 CWE-863 Incorrect Authorization
25 CWE-276 Incorrect Default Permissions
36 CWE-401 Missing Release of Memory after Effective Lifetime

Source: https://cwe.mitre.org/top25/archive/2023/2023_top25_list.html

Which vulnerabilities can be mitigated through PL design?

Application independent: memory bugs

Why Heap Bugs are Dangerous ? Use-After-Free as an Example

6

1. free(p1) bin forward ptr forward ptr
headerheader

...
p1

arbitrary addrbin forward ptr
headerp1

2. write(p1)

3. p2 = malloc() bin arbitrary addr

4. p3 = malloc() p3 arbitrary addr

Add the block of *p1 to the free list

Remove the block from the list; now bin points to the arbitrary address

p3 points to the arbitrary address

Attackers modify the forward pointer through p1

Detecting UAF is Hard: via Allocator Design

7

vOption 1: prevent writing the dangling pointer p1

arbitrary addrbin forward ptr
headerp1

2. write(p1)

Problem: incur overhead during each pointer access

vOption 2: prevent adding invalid blocks to the free list

How to design an efficient and robust mechanism?

3. p2 = malloc() bin arbitrary addr

Detecting UAF is Hard: Static Analysis

8

vAlias analysis is NP-Hard
ØHamiltonian path problems => Flow-insensitive may-alias analysis

ØMore complicated alias analysis problems!
� Flow-sensitive, path-sensitive, control-sensitive, context sensitive…
� Raw pointer: point-to
� Concurrent code

Susan Horwitz, Precise Flow-Insensitive May-Alias Analysis is NP-Hard, 1997

2 3

4 5

1 v4 = &v5
v2 = &v4
v3 = &v4
v2 = &v3
v1 = &v2

Hamiltonian Path May-Alias Analysis

****v1 = v5 ?

Auto Heap Management: Rust Tackles the Problem via Ownership

9

vEach object is owned by one variable
vOwnership can be moved or borrowed

ØMode of borrowing: immutable/mutable

let mut alice = Box::new(1);
let bob = alice;
println!("alice:{}", alice);

let mut alice = Box::new(1);
let bob = &mut alice;
**bob = **bob + 1;
println!("alice:{}", alice);

alice owns the Box object
move the ownership from alice to bob

bob borrows the ownership

bob is dead; return the ownership

vExclusive mutability principle: an object cannot be mutable and
shared at one program point.
ØRust compiler checks whether there is a solution

Limitations of Ownership
vWe may need shared mutable references, e.g., double-linked list

struct List {
 val: u64,
 next: *mut List,
 prev: *mut List,
}

next
prev

next
prev

next
prev

struct List {
 val: u64,
 prev: Option<Rc<RefCell<List>>>,
 next: Option<Rc<RefCell<List>>>,
}

Option 1: Shared Pointer
(with runtime cost)

Option 2: Raw Pointer
(unsafe code, bypass borrow check)

vOwnership also requires RAII because dropping unit data is bad
ØUse unsafe code to create uninitialized object

Empirical Study of Memory-Safety Bugs in Rust Projects
v 185 bugs reported before 2020-12-31 (all CVEs/Advisory DB + GitHub)
v 35/185 bugs involve bad drop issues caused by unsafe code
vMemory leakage bugs are not included (not memory-safety issues)

“Memory-safety challenge considered solved? An in-depth study with all Rust CVEs”, TOSEM, 2022.

Our Research Efforts: Fight the Heap War with Rust

12

vDangling pointer detection: use-after-free, double free

vMemory leakage detection: the opposite of dangling pointer

vDesign a better way to handle heap exhaustion risks

2. Dangling Pointer Detection

13

SafeDrop: Detecting memory deallocation bugs of Rust programs via static data-
flow analysis, TOSEM, 2022.

Motivating Example: Dangling Pointer

14

fn foo() -> Vec<u8> {
 let mut s = String::from("a tmp string");
 let mut s = ManuallyDrop::new(String::from("a tmp string"));
 let ptr = s.as_mut_ptr();
 unsafe {
 let v = Vec::from_raw_parts(ptr, s.len(), s.len());
 //fix 2: mem::forget(s);
 //still suffer double free if panic before the statement
 v
 }
 //s is freed when the function returns
}

fn main() {
 let v = foo();
 assert_eq!('a' as u8, v[0]); //!!!use-after-free
 //drop v, !!!double free occurs here
}

-
+

both s and v own the memory pointed by ptr

Bug Analysis with Rust MIR

15

_1 = const <std::string::String as std::convert::From<&str>>
 ::from(const "a tmp string") -> bb2;bb0:

_5 = &mut _1;
_4 = const <std::string::String as std::ops::DerefMut>::deref_mut(move _5)
-> [return: bb3, unwind: bb4];

resume;

bb2:

bb1:

_3 = &mut (*_4);
_2 = const core::str::<impl str>::as_mut_ptr(move _3)
-> [return: bb5, unwind: bb4];

bb3:

drop(_1)
-> bb1;

bb4:

_6 = _2;
_8 = &_1;
_7 = const std::string::String::len(move _8) -> [return: bb6, unwind: bb4];

bb5:

_10 = &_1;
_9 = const std::string::String::len(move _10) -> [return: bb7, unwind: bb4];bb6:

return;

_0 = const std::vec::Vec::<u8>::from_raw_parts(move _6, move _7, move _9)
-> [return: bb8, unwind: bb4];bb7:

drop(_1) -> bb9;//calling mem::forget(s) can remove this drop instruction.

bb9:

bb8:

Real-world programs could have more code here, and it may panic the program.

Bad drop of normal
execution

Bad drop of
exception
handling

drop(_0)

Abstraction of Bug Patterns

16

Var 1 Heap Object

create aliases

Var 1

Heap ObjectVar 2

• No aliases should be used or dropped
• Otherwise, positive

Var 3

Heap Object
Var 2

Var 3

drop(var1)

Var 1 Uninit Object

create aliases

Heap Object
Var 1

Var 2

Initialization done

• No aliases should be dropped
• Otherwise, positive

ownership

Uninit Object
Var 1

Var 2

Approach for Dangling Pointer Bug Detection

17

vRequirements:
ØEffective: use-after-free, double free, drop unint memory
ØPrecise: should not incur much false positives
ØEfficient: fast

vApproach: path-sensitive analysis

1. Path Extraction 2. Alias Analysis 3. Pattern Detection

Approach:

18

vExtract the spanning tree of each function:
ØCompute strongly-connected components with Tarjan Algorithm
ØCompute the may alias sets of each SCC

vRefine the tree based on rules to handle conner cases

1. Path Extraction 2. Alias Analysis 3. Pattern Detection

Control-flow Graph Spanning Tree

Approach:

19

vRules: similar to Steensgaard, but ignore multi-level pointers

1. Path Extraction 2. Alias Analysis 3. Pattern Detection

vExample:

Approach:

20

vField sensitivity and inter-procedural analysis

1. Path Extraction 2. Alias Analysis 3. Pattern Detection

inter-procedural

field sensitive

update

{0.0.0, 1}

Approach:

21

1. Path extraction 2. Alias Analysis 3. Pattern Detection

Var 1 Heap Object

create aliases

Var 1

Heap ObjectVar 2

• No aliases should be used or dropped
• Otherwise, positive

Var 3

Heap Object
Var 2

Var 3

drop(var1)

Var 1 Uninit Object

create aliases

Heap Object
Var 1

Var 2

Initialization done

• No aliases should be dropped
• Otherwise, positive

Uninit Object
Var 1

Var 2

Experimental Results

22

vCan detect all related CVEs with a low false positive rate
v False positive: compiler intrinsic trait implementations are unavailable

ØAssume aliases among the arguments and return value

Experimental Results: Efficiency

23

vVery small overhead compared to the original compilation

3. Memory Leakage Detection

24

rCanary: Detecting memory leaks across semi-automated memory
management boundary in Rust, arXiv, 2023.

+

Memory Leakage Problem

25

vConsuming an ownership (leak) is safe in Rust
vTaking an ownership or manual deallocation is unsafe

let mut buf = Box::new("buffer");
let ptr = Box::into_raw(buf); //consume the ownership
// unsafe { let _ = *ptr; }
unsafe { drop_in_place(ptr); }

+ buf is not owned by anyone

Abstraction of Bug Patterns

26

Var 1 Heap Object

Var 2 Heap Object

create aliases
consume the ownership

Var 2
Heap Object

more aliases

Var 3

At least one variable should be properly dropped
Otherwise, positive

resource token

ownership

Practical Cases are More Complicated

27

vField-sensitivity issues
vCorrectness of Drop trait implementation
pub struct WString { ptr: NonNull<WStr>, capacity: usize, }
impl WString {

unsafe fn steal_buf(&mut self)
-> ManuallyDrop<Units<Vec<u8>, Vec<u16>>> { ... }

}
impl Drop for WString {

fn drop(&mut self) {
let _ = unsafe { self.steal_buf() };
unsafe {

let mut buf = self.steal_buf();
ManuallyDrop::drop(&mut buf);

};
}

}

-

+
+

steal_buf() returns a ManuallyDrop object

https://github.com/ruffle-rs/ruffle/pull/6528

Overall Idea: Model Checking

28

vType encoding: abstract data types wrt heap resource holding
vConstraint extraction: path-insensitive data-flow analysis

Øfast, less false positives
vConstraint solving: based on Z3

1. Type Encoding 2. Constraint
Extraction

3. Constraint Solving

Approach

29

v Encode each type as a one-level bit vector (field-sensitive)
vAlso encode the corresponding drop function as a one-level bit vector

1. Type Encoding 2. Constraint
Extraction

3. Constraint Solving

Drop: [0,0]

Approach

30

1. Type Encoding 2. Constraint
Extraction 3. Constraint Solving

Example

31

Encoded the destructor as [1] since it does not drop ptr

Experimental Results

32

vCan detect all issues of a dataset collected from GitHub
vA small number of false positives

Large-Scale Experiments

33

v1.2k real-world Rust crates in 96 minutes (8.4 per crate)
vFind 19 crates with potential leak issues

4. Heap Exhaustion Handling

OOM-Guard: Towards improving the ergonomics of Rust OOM
handling via a reservation-based approach, FSE, 2023.

34

Problem of Out-Of-Memory

35

vRust adopts an infallible mode:
ØNo way for developers to handle OOM
ØTerminate the process if OOM

vProblem: many APIs involve heap allocations underneath

https://doc.rust-lang.org/std/primitive.slice.html#method.sort

API - F1

F2 F3

F4
F5

malloc()

Sample Call Graph

Fallible Mode in Nightly Rust

36

vEnable developers to handle allocation failures
vRequires much programming efforts

API - F1

F2 F3

F4
F5

malloc()

Infallible mode

API-F1

F2 F3

F4 F5
try_malloc()

Fallible mode

error propagation

try_malloc(...) -> Result<...>

https://rust-lang.github.io/rfcs/2116-alloc-me-maybe.html

Overall Idea: A Convenient Way to Handle OOM

37

vReserve a large enough heap space by the top-level API
vSubsequent allocations reusing the space would not fail

fn F1(...) -> Result<...>{
 // reservation stmts

let r2 = F2(...);
 let r3 = F3(...);
 ...
}

API-F1

F2 F3

F4 F5
malloc()

vHow to automate the process?
ØCompute the memory size needed for reservation
Ø Insert the reservation statements at the function entry
ØHook subsequent allocations to use the reserved memory

Framework of Our Solution

38

Annotation

Source Code
with

OOM-Guard Macro

Developer

Macro
Expansion New Code

with
Mem Reservation

Mem Cost
Analysis

Executable
with

Mem Reservation

Compilation

System Allocator

Proxy Allocator

fn A(x:i8){ B(); C(x);}

fn C(y:i8){
 let z = match y {
 0 => 8,
 _ => y,
 };

E(z); F();
}

fn E(n:i8){__rust_alloc(n + 8);}

A

B C

E FD

E is function with allocation sites

Cost Expression of Function A:
Phi(x, 8) + 8

Cost Expression of Function E:
n + 8

Cost Expression of Function C:
Phi(y, 8) + 8

replace n with Phi(y, 8)

replace y with x

Memory Cost Analysis

vCases that cannot be analyzed: need more annotations
Ø Implicit loop bound: bound annotation
ØLoop variant allocation size: sub-level reservation
ØDynamic dispatch/function pointers: sub-level reservation

When A is called, reserve max (x, 8) + 8

Demonstration of Usage

40

Experiments: Effectiveness

41

vTarget Rust projects:
ØrCore: an operating system
ØBento-fs: a file system

vEffectiveness: less code needed (1/5), no crash of OOM

Experimental Results: Efficiency

42

Memory cost analysis overhead

Peak memory usage
comparison

Execution time

5. Summary

43

Summary and Takeaways

44

v Limitation of Rust ownership:

Ø Ineffective for unsafe code

Ø Ignores memory leakage

vOur approaches to detect heap bugs:

ØDangling pointer: path-sensitive

ØMemory leakage: model checking

vRust lacks convenient heap exhaustion handling: infallible/fallible

vOur reservation-based approach (hybrid mode) with better ergonomics

Q & A

45

Thanks for Watching

xuh@fudan.edu.cn

